Cargando…
Bioinformatic Analysis of the BCL-xL/BCL2L1 Interactome in Patients with Pancreatic Cancer
Objectives: The aim of the present study was to analyze the differential gene expression of BCL-xL/BCL2L and the associated genetic, molecular, and biologic functions in pancreatic ductal adenocarcinoma (PDAC) by employing advanced bioinformatics to investigate potential candidate genes implicated i...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9698957/ https://www.ncbi.nlm.nih.gov/pubmed/36422202 http://dx.doi.org/10.3390/medicina58111663 |
_version_ | 1784838949582143488 |
---|---|
author | Magouliotis, Dimitrios E. Karamolegkou, Anna P. Zotos, Prokopis-Andreas Tatsios, Evangelos Samara, Athina A. Alexopoulou, Dimitra Koutsougianni, Fani Sakellaridis, Nikos Zacharoulis, Dimitris Dimas, Konstantinos |
author_facet | Magouliotis, Dimitrios E. Karamolegkou, Anna P. Zotos, Prokopis-Andreas Tatsios, Evangelos Samara, Athina A. Alexopoulou, Dimitra Koutsougianni, Fani Sakellaridis, Nikos Zacharoulis, Dimitris Dimas, Konstantinos |
author_sort | Magouliotis, Dimitrios E. |
collection | PubMed |
description | Objectives: The aim of the present study was to analyze the differential gene expression of BCL-xL/BCL2L and the associated genetic, molecular, and biologic functions in pancreatic ductal adenocarcinoma (PDAC) by employing advanced bioinformatics to investigate potential candidate genes implicated in the pathogenesis of PDAC. Materials and Methods: Bioinformatic techniques were employed to build the gene network of BCL-xL, to assess the translational profile of BCL-xL in PDAC, assess its role in predicting PDAC, and investigate the associated biologic functions and the regulating miRNA families. Results: Microarray data extracted from one dataset was incorporated, including 130 samples (PDAC: 69; Control: 61). In addition, the expression level of BCL-xL was higher in PDAC compared to control samples (p < 0.001). Furthermore, BCL-xL demonstrated excellent discrimination (AUC: 0.83 [95% Confidence Intervals: 0.76, 0.90]; p < 0.001) and calibration (R squared: 0.31) traits for PDAC. A gene set enrichment analysis (GSEA) demonstrated the molecular functions and miRNA families (hsa-miR-4804-5p, hsa-miR-4776-5p, hsa-miR-6770-3p, hsa-miR-3619-3p, and hsa-miR-7152-3p) related to BCL-xL. Conclusions: The current findings unveil the biological implications of BCL-xL in PDAC and the related molecular functions and miRNA families. |
format | Online Article Text |
id | pubmed-9698957 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96989572022-11-26 Bioinformatic Analysis of the BCL-xL/BCL2L1 Interactome in Patients with Pancreatic Cancer Magouliotis, Dimitrios E. Karamolegkou, Anna P. Zotos, Prokopis-Andreas Tatsios, Evangelos Samara, Athina A. Alexopoulou, Dimitra Koutsougianni, Fani Sakellaridis, Nikos Zacharoulis, Dimitris Dimas, Konstantinos Medicina (Kaunas) Article Objectives: The aim of the present study was to analyze the differential gene expression of BCL-xL/BCL2L and the associated genetic, molecular, and biologic functions in pancreatic ductal adenocarcinoma (PDAC) by employing advanced bioinformatics to investigate potential candidate genes implicated in the pathogenesis of PDAC. Materials and Methods: Bioinformatic techniques were employed to build the gene network of BCL-xL, to assess the translational profile of BCL-xL in PDAC, assess its role in predicting PDAC, and investigate the associated biologic functions and the regulating miRNA families. Results: Microarray data extracted from one dataset was incorporated, including 130 samples (PDAC: 69; Control: 61). In addition, the expression level of BCL-xL was higher in PDAC compared to control samples (p < 0.001). Furthermore, BCL-xL demonstrated excellent discrimination (AUC: 0.83 [95% Confidence Intervals: 0.76, 0.90]; p < 0.001) and calibration (R squared: 0.31) traits for PDAC. A gene set enrichment analysis (GSEA) demonstrated the molecular functions and miRNA families (hsa-miR-4804-5p, hsa-miR-4776-5p, hsa-miR-6770-3p, hsa-miR-3619-3p, and hsa-miR-7152-3p) related to BCL-xL. Conclusions: The current findings unveil the biological implications of BCL-xL in PDAC and the related molecular functions and miRNA families. MDPI 2022-11-17 /pmc/articles/PMC9698957/ /pubmed/36422202 http://dx.doi.org/10.3390/medicina58111663 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Magouliotis, Dimitrios E. Karamolegkou, Anna P. Zotos, Prokopis-Andreas Tatsios, Evangelos Samara, Athina A. Alexopoulou, Dimitra Koutsougianni, Fani Sakellaridis, Nikos Zacharoulis, Dimitris Dimas, Konstantinos Bioinformatic Analysis of the BCL-xL/BCL2L1 Interactome in Patients with Pancreatic Cancer |
title | Bioinformatic Analysis of the BCL-xL/BCL2L1 Interactome in Patients with Pancreatic Cancer |
title_full | Bioinformatic Analysis of the BCL-xL/BCL2L1 Interactome in Patients with Pancreatic Cancer |
title_fullStr | Bioinformatic Analysis of the BCL-xL/BCL2L1 Interactome in Patients with Pancreatic Cancer |
title_full_unstemmed | Bioinformatic Analysis of the BCL-xL/BCL2L1 Interactome in Patients with Pancreatic Cancer |
title_short | Bioinformatic Analysis of the BCL-xL/BCL2L1 Interactome in Patients with Pancreatic Cancer |
title_sort | bioinformatic analysis of the bcl-xl/bcl2l1 interactome in patients with pancreatic cancer |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9698957/ https://www.ncbi.nlm.nih.gov/pubmed/36422202 http://dx.doi.org/10.3390/medicina58111663 |
work_keys_str_mv | AT magouliotisdimitriose bioinformaticanalysisofthebclxlbcl2l1interactomeinpatientswithpancreaticcancer AT karamolegkouannap bioinformaticanalysisofthebclxlbcl2l1interactomeinpatientswithpancreaticcancer AT zotosprokopisandreas bioinformaticanalysisofthebclxlbcl2l1interactomeinpatientswithpancreaticcancer AT tatsiosevangelos bioinformaticanalysisofthebclxlbcl2l1interactomeinpatientswithpancreaticcancer AT samaraathinaa bioinformaticanalysisofthebclxlbcl2l1interactomeinpatientswithpancreaticcancer AT alexopouloudimitra bioinformaticanalysisofthebclxlbcl2l1interactomeinpatientswithpancreaticcancer AT koutsougiannifani bioinformaticanalysisofthebclxlbcl2l1interactomeinpatientswithpancreaticcancer AT sakellaridisnikos bioinformaticanalysisofthebclxlbcl2l1interactomeinpatientswithpancreaticcancer AT zacharoulisdimitris bioinformaticanalysisofthebclxlbcl2l1interactomeinpatientswithpancreaticcancer AT dimaskonstantinos bioinformaticanalysisofthebclxlbcl2l1interactomeinpatientswithpancreaticcancer |