Cargando…

Bioinformatic Analysis of the BCL-xL/BCL2L1 Interactome in Patients with Pancreatic Cancer

Objectives: The aim of the present study was to analyze the differential gene expression of BCL-xL/BCL2L and the associated genetic, molecular, and biologic functions in pancreatic ductal adenocarcinoma (PDAC) by employing advanced bioinformatics to investigate potential candidate genes implicated i...

Descripción completa

Detalles Bibliográficos
Autores principales: Magouliotis, Dimitrios E., Karamolegkou, Anna P., Zotos, Prokopis-Andreas, Tatsios, Evangelos, Samara, Athina A., Alexopoulou, Dimitra, Koutsougianni, Fani, Sakellaridis, Nikos, Zacharoulis, Dimitris, Dimas, Konstantinos
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9698957/
https://www.ncbi.nlm.nih.gov/pubmed/36422202
http://dx.doi.org/10.3390/medicina58111663
_version_ 1784838949582143488
author Magouliotis, Dimitrios E.
Karamolegkou, Anna P.
Zotos, Prokopis-Andreas
Tatsios, Evangelos
Samara, Athina A.
Alexopoulou, Dimitra
Koutsougianni, Fani
Sakellaridis, Nikos
Zacharoulis, Dimitris
Dimas, Konstantinos
author_facet Magouliotis, Dimitrios E.
Karamolegkou, Anna P.
Zotos, Prokopis-Andreas
Tatsios, Evangelos
Samara, Athina A.
Alexopoulou, Dimitra
Koutsougianni, Fani
Sakellaridis, Nikos
Zacharoulis, Dimitris
Dimas, Konstantinos
author_sort Magouliotis, Dimitrios E.
collection PubMed
description Objectives: The aim of the present study was to analyze the differential gene expression of BCL-xL/BCL2L and the associated genetic, molecular, and biologic functions in pancreatic ductal adenocarcinoma (PDAC) by employing advanced bioinformatics to investigate potential candidate genes implicated in the pathogenesis of PDAC. Materials and Methods: Bioinformatic techniques were employed to build the gene network of BCL-xL, to assess the translational profile of BCL-xL in PDAC, assess its role in predicting PDAC, and investigate the associated biologic functions and the regulating miRNA families. Results: Microarray data extracted from one dataset was incorporated, including 130 samples (PDAC: 69; Control: 61). In addition, the expression level of BCL-xL was higher in PDAC compared to control samples (p < 0.001). Furthermore, BCL-xL demonstrated excellent discrimination (AUC: 0.83 [95% Confidence Intervals: 0.76, 0.90]; p < 0.001) and calibration (R squared: 0.31) traits for PDAC. A gene set enrichment analysis (GSEA) demonstrated the molecular functions and miRNA families (hsa-miR-4804-5p, hsa-miR-4776-5p, hsa-miR-6770-3p, hsa-miR-3619-3p, and hsa-miR-7152-3p) related to BCL-xL. Conclusions: The current findings unveil the biological implications of BCL-xL in PDAC and the related molecular functions and miRNA families.
format Online
Article
Text
id pubmed-9698957
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-96989572022-11-26 Bioinformatic Analysis of the BCL-xL/BCL2L1 Interactome in Patients with Pancreatic Cancer Magouliotis, Dimitrios E. Karamolegkou, Anna P. Zotos, Prokopis-Andreas Tatsios, Evangelos Samara, Athina A. Alexopoulou, Dimitra Koutsougianni, Fani Sakellaridis, Nikos Zacharoulis, Dimitris Dimas, Konstantinos Medicina (Kaunas) Article Objectives: The aim of the present study was to analyze the differential gene expression of BCL-xL/BCL2L and the associated genetic, molecular, and biologic functions in pancreatic ductal adenocarcinoma (PDAC) by employing advanced bioinformatics to investigate potential candidate genes implicated in the pathogenesis of PDAC. Materials and Methods: Bioinformatic techniques were employed to build the gene network of BCL-xL, to assess the translational profile of BCL-xL in PDAC, assess its role in predicting PDAC, and investigate the associated biologic functions and the regulating miRNA families. Results: Microarray data extracted from one dataset was incorporated, including 130 samples (PDAC: 69; Control: 61). In addition, the expression level of BCL-xL was higher in PDAC compared to control samples (p < 0.001). Furthermore, BCL-xL demonstrated excellent discrimination (AUC: 0.83 [95% Confidence Intervals: 0.76, 0.90]; p < 0.001) and calibration (R squared: 0.31) traits for PDAC. A gene set enrichment analysis (GSEA) demonstrated the molecular functions and miRNA families (hsa-miR-4804-5p, hsa-miR-4776-5p, hsa-miR-6770-3p, hsa-miR-3619-3p, and hsa-miR-7152-3p) related to BCL-xL. Conclusions: The current findings unveil the biological implications of BCL-xL in PDAC and the related molecular functions and miRNA families. MDPI 2022-11-17 /pmc/articles/PMC9698957/ /pubmed/36422202 http://dx.doi.org/10.3390/medicina58111663 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Magouliotis, Dimitrios E.
Karamolegkou, Anna P.
Zotos, Prokopis-Andreas
Tatsios, Evangelos
Samara, Athina A.
Alexopoulou, Dimitra
Koutsougianni, Fani
Sakellaridis, Nikos
Zacharoulis, Dimitris
Dimas, Konstantinos
Bioinformatic Analysis of the BCL-xL/BCL2L1 Interactome in Patients with Pancreatic Cancer
title Bioinformatic Analysis of the BCL-xL/BCL2L1 Interactome in Patients with Pancreatic Cancer
title_full Bioinformatic Analysis of the BCL-xL/BCL2L1 Interactome in Patients with Pancreatic Cancer
title_fullStr Bioinformatic Analysis of the BCL-xL/BCL2L1 Interactome in Patients with Pancreatic Cancer
title_full_unstemmed Bioinformatic Analysis of the BCL-xL/BCL2L1 Interactome in Patients with Pancreatic Cancer
title_short Bioinformatic Analysis of the BCL-xL/BCL2L1 Interactome in Patients with Pancreatic Cancer
title_sort bioinformatic analysis of the bcl-xl/bcl2l1 interactome in patients with pancreatic cancer
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9698957/
https://www.ncbi.nlm.nih.gov/pubmed/36422202
http://dx.doi.org/10.3390/medicina58111663
work_keys_str_mv AT magouliotisdimitriose bioinformaticanalysisofthebclxlbcl2l1interactomeinpatientswithpancreaticcancer
AT karamolegkouannap bioinformaticanalysisofthebclxlbcl2l1interactomeinpatientswithpancreaticcancer
AT zotosprokopisandreas bioinformaticanalysisofthebclxlbcl2l1interactomeinpatientswithpancreaticcancer
AT tatsiosevangelos bioinformaticanalysisofthebclxlbcl2l1interactomeinpatientswithpancreaticcancer
AT samaraathinaa bioinformaticanalysisofthebclxlbcl2l1interactomeinpatientswithpancreaticcancer
AT alexopouloudimitra bioinformaticanalysisofthebclxlbcl2l1interactomeinpatientswithpancreaticcancer
AT koutsougiannifani bioinformaticanalysisofthebclxlbcl2l1interactomeinpatientswithpancreaticcancer
AT sakellaridisnikos bioinformaticanalysisofthebclxlbcl2l1interactomeinpatientswithpancreaticcancer
AT zacharoulisdimitris bioinformaticanalysisofthebclxlbcl2l1interactomeinpatientswithpancreaticcancer
AT dimaskonstantinos bioinformaticanalysisofthebclxlbcl2l1interactomeinpatientswithpancreaticcancer