Cargando…

Salidroside Alleviates Renal Fibrosis in SAMP8 Mice by Inhibiting Ferroptosis

Renal fibrosis progression is closely associated with aging, which ultimately leads to renal dysfunction. Salidroside (SAL) is considered to have broad anti-aging effects. However, the roles and mechanisms of SAL in aging-related renal fibrosis remain unclear. The study aimed to evaluate the protect...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Sixia, Pei, Tingting, Wang, Linshuang, Zeng, Yi, Li, Wenxu, Yan, Shihua, Xiao, Wei, Cheng, Weidong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9698989/
https://www.ncbi.nlm.nih.gov/pubmed/36432138
http://dx.doi.org/10.3390/molecules27228039
Descripción
Sumario:Renal fibrosis progression is closely associated with aging, which ultimately leads to renal dysfunction. Salidroside (SAL) is considered to have broad anti-aging effects. However, the roles and mechanisms of SAL in aging-related renal fibrosis remain unclear. The study aimed to evaluate the protective effects and mechanisms of SAL in SAMP8 mice. SAMP8 mice were administered with SAL and Ferrostatin-1 (Fer-1) for 12 weeks. Renal function, renal fibrosis, and ferroptosis in renal tissue were detected. The results showed that elevated blood urea nitrogen (BUN) and serum creatinine (SCr) levels significantly decreased, serum albumin (ALB) levels increased, and mesangial hyperplasia significantly reduced in the SAL group. SAL significantly reduced transforming growth factor-β (TGF-β) and α-smooth muscle actin (α-sma) levels in SAMP8 mice. SAL treatment significantly decreased lipid peroxidation in the kidneys, and regulated iron transport-related proteins and ferroptosis-related proteins. These results suggested that SAL delays renal aging and inhibits aging-related glomerular fibrosis by inhibiting ferroptosis in SAMP8 mice.