Cargando…

Integrating Microfluidics and Electronics in Point-of-Care Diagnostics: Current and Future Challenges †

Point-of-Care (POC) diagnostics have gained increasing attention in recent years due to its numerous advantages over conventional diagnostic approaches. As proven during the recent COVID-19 pandemic, the rapidity and portability of POC testing improves the efficiency of healthcare services and reduc...

Descripción completa

Detalles Bibliográficos
Autores principales: Annese, Valerio Francesco, Hu, Chunxiao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9699090/
https://www.ncbi.nlm.nih.gov/pubmed/36363944
http://dx.doi.org/10.3390/mi13111923
Descripción
Sumario:Point-of-Care (POC) diagnostics have gained increasing attention in recent years due to its numerous advantages over conventional diagnostic approaches. As proven during the recent COVID-19 pandemic, the rapidity and portability of POC testing improves the efficiency of healthcare services and reduces the burden on healthcare providers. There are hundreds of thousands of different applications for POC diagnostics, however, the ultimate requirement for the test is the same: sample-in and result-out. Many technologies have been implemented, such as microfluidics, semiconductors, and nanostructure, to achieve this end. The development of even more powerful POC systems was also enabled by merging multiple technologies into the same system. One successful example is the integration of microfluidics and electronics in POC diagnostics, which has simplified the sample handling process, reduced sample usage, and reduced the cost of the test. This review will analyze the current development of the POC diagnostic systems with the integration of microfluidics and electronics and discuss the future challenges and perspectives that researchers might have.