Cargando…

Evolutionary Dynamics of Whole-Genome Influenza A/H3N2 Viruses Isolated in Myanmar from 2015 to 2019

This study aimed to analyze the genetic and evolutionary characteristics of the influenza A/H3N2 viruses circulating in Myanmar from 2015 to 2019. Whole genomes from 79 virus isolates were amplified using real-time polymerase chain reaction and successfully sequenced using the Illumina iSeq100 platf...

Descripción completa

Detalles Bibliográficos
Autores principales: Phyu, Wint Wint, Saito, Reiko, Kyaw, Yadanar, Lin, Nay, Win, Su Mon Kyaw, Win, Nay Chi, Ja, Lasham Di, Htwe, Khin Thu Zar, Aung, Thin Zar, Tin, Htay Htay, Pe, Eh Htoo, Chon, Irina, Wagatsuma, Keita, Watanabe, Hisami
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9699102/
https://www.ncbi.nlm.nih.gov/pubmed/36366512
http://dx.doi.org/10.3390/v14112414
Descripción
Sumario:This study aimed to analyze the genetic and evolutionary characteristics of the influenza A/H3N2 viruses circulating in Myanmar from 2015 to 2019. Whole genomes from 79 virus isolates were amplified using real-time polymerase chain reaction and successfully sequenced using the Illumina iSeq100 platforms. Eight individual phylogenetic trees were retrieved for each segment along with those of the World Health Organization (WHO)-recommended Southern Hemisphere vaccine strains for the respective years. Based on the WHO clades classification, the A/H3N2 strains in Myanmar from 2015 to 2019 collectively belonged to clade 3c.2. These strains were further defined based on hemagglutinin substitutions as follows: clade 3C.2a (n = 39), 3C.2a1 (n = 2), and 3C.2a1b (n = 38). Genetic analysis revealed that the Myanmar strains differed from the Southern Hemisphere vaccine strains each year, indicating that the vaccine strains did not match the circulating strains. The highest rates of nucleotide substitution were estimated for hemagglutinin (3.37 × 10(−3) substitutions/site/year) and neuraminidase (2.89 × 10(−3) substitutions/site/year). The lowest rate was for non-structural protein segments (4.19 × 10(−5) substitutions/site/year). The substantial genetic diversity that was revealed improved phylogenetic classification. This information will be particularly relevant for improving vaccine strain selection.