Cargando…
Distress Detection in Subway Tunnel Images via Data Augmentation Based on Selective Image Cropping and Patching
Distresses, such as cracks, directly reflect the structural integrity of subway tunnels. Therefore, the detection of subway tunnel distress is an essential task in tunnel structure maintenance. This paper presents the performance improvement of deep learning-based distress detection to support the m...
Autores principales: | Maeda, Keisuke, Takada, Saya, Haruyama, Tomoki, Togo, Ren, Ogawa, Takahiro, Haseyama, Miki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9699127/ https://www.ncbi.nlm.nih.gov/pubmed/36433529 http://dx.doi.org/10.3390/s22228932 |
Ejemplares similares
-
Defect Detection of Subway Tunnels Using Advanced U-Net Network
por: Wang, An, et al.
Publicado: (2022) -
Manipulation Direction: Evaluating Text-Guided Image Manipulation Based on Similarity between Changes in Image and Text Modalities
por: Watanabe, Yuto, et al.
Publicado: (2023) -
Reliable Estimation of Deterioration Levels via Late Fusion Using Multi-View Distress Images for Practical Inspection
por: Maeda, Keisuke, et al.
Publicado: (2021) -
Rubber Material Property Prediction Using Electron Microscope Images of Internal Structures Taken under Multiple Conditions
por: Togo, Ren, et al.
Publicado: (2021) -
Diversity Learning Based on Multi-Latent Space for Medical Image Visual Question Generation
por: Zhu, He, et al.
Publicado: (2023)