Cargando…
Analysis of Thermal Imaging Performance under Extreme Foggy Conditions: Applications to Autonomous Driving
Object detection is recognized as one of the most critical research areas for the perception of self-driving cars. Current vision systems combine visible imaging, LIDAR, and/or RADAR technology, allowing perception of the vehicle’s surroundings. However, harsh weather conditions mitigate the perform...
Autores principales: | Rivera Velázquez, Josué Manuel, Khoudour, Louahdi, Saint Pierre, Guillaume, Duthon, Pierre, Liandrat, Sébastien, Bernardin, Frédéric, Fiss, Sharon, Ivanov, Igor, Peleg, Raz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9699133/ https://www.ncbi.nlm.nih.gov/pubmed/36354879 http://dx.doi.org/10.3390/jimaging8110306 |
Ejemplares similares
-
3D Object Detection with SLS-Fusion Network in Foggy Weather Conditions
por: Mai, Nguyen Anh Minh, et al.
Publicado: (2021) -
3D Object Detection for Self-Driving Cars Using Video and LiDAR: An Ablation Study
por: Salmane, Pascal Housam, et al.
Publicado: (2023) -
SWEET: A Realistic Multiwavelength 3D Simulator for Automotive Perceptive Sensors in Foggy Conditions
por: Ben-Daoued, Amine, et al.
Publicado: (2023) -
The Foggy Days
Publicado: (1908) -
Foggy perception slows us down
por: Pretto, Paolo, et al.
Publicado: (2012)