Cargando…

Genome-Wide Identification of the Aconitase Gene Family in Tomato (Solanum lycopersicum) and CRISPR-Based Functional Characterization of SlACO2 on Male-Sterility

Tomato (Solanum lycopersicum) is one of the most cultivated vegetables in the world due to its consumption in a large variety of raw, cooked, or processed foods. Tomato breeding and productivity highly depend on the use of hybrid seeds and their higher yield, environmental adaption, and disease tole...

Descripción completa

Detalles Bibliográficos
Autores principales: Secgin, Zafer, Uluisik, Selman, Yıldırım, Kubilay, Abdulla, Mohamed Farah, Mostafa, Karam, Kavas, Musa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9699144/
https://www.ncbi.nlm.nih.gov/pubmed/36430441
http://dx.doi.org/10.3390/ijms232213963
_version_ 1784838999159865344
author Secgin, Zafer
Uluisik, Selman
Yıldırım, Kubilay
Abdulla, Mohamed Farah
Mostafa, Karam
Kavas, Musa
author_facet Secgin, Zafer
Uluisik, Selman
Yıldırım, Kubilay
Abdulla, Mohamed Farah
Mostafa, Karam
Kavas, Musa
author_sort Secgin, Zafer
collection PubMed
description Tomato (Solanum lycopersicum) is one of the most cultivated vegetables in the world due to its consumption in a large variety of raw, cooked, or processed foods. Tomato breeding and productivity highly depend on the use of hybrid seeds and their higher yield, environmental adaption, and disease tolerance. However, the emasculation procedure during hybridization raises tomato seed production costs and labor expenses. Using male sterility is an effective way to reduce the cost of hybrid seeds and ensure cultivar purity. Recent developments in CRISPR genome editing technology enabled tomato breeders to investigate the male sterility genes and to develop male-sterile tomato lines. In the current study, the tomato Acotinase (SlACO) gene family was investigated via in silico tools and functionally characterized with CRISPR/Cas9-mediated gene disruption. Genome-wide blast and HMM search represented two SlACO genes located on different tomato chromosomes. Both genes were estimated to have a segmental duplication in the tomato genome due to their identical motif and domain structure. One of these genes, SlACO2, showed a high expression profile in all generative cells of tomato. Therefore, the SlACO2 gene was targeted with two different gRNA/Cas9 constructs to identify their functional role in tomatoes. The gene was mutated in a total of six genome-edited tomato lines, two of which were homozygous. Surprisingly, pollen viability was found to be extremely low in mutant plants compared to their wild-type (WT) counterparts. Likewise, the number of seeds per fruit also sharply decreased more than fivefold in mutant lines (10–12 seeds) compared to that in WT (67 seeds). The pollen shape, anther structures, and flower colors/shapes were not significantly varied between the mutant and WT tomatoes. The mutated lines were also subjected to salt and mannitol-mediated drought stress to test the effect of SlACO2 on abiotic stress tolerance. The results of the study indicated that mutant tomatoes have higher tolerance with significantly lower MDA content under stress conditions. This is the first CRISPR-mediated characterization of ACO genes on pollen viability, seed formation, and abiotic stress tolerance in tomatoes.
format Online
Article
Text
id pubmed-9699144
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-96991442022-11-26 Genome-Wide Identification of the Aconitase Gene Family in Tomato (Solanum lycopersicum) and CRISPR-Based Functional Characterization of SlACO2 on Male-Sterility Secgin, Zafer Uluisik, Selman Yıldırım, Kubilay Abdulla, Mohamed Farah Mostafa, Karam Kavas, Musa Int J Mol Sci Article Tomato (Solanum lycopersicum) is one of the most cultivated vegetables in the world due to its consumption in a large variety of raw, cooked, or processed foods. Tomato breeding and productivity highly depend on the use of hybrid seeds and their higher yield, environmental adaption, and disease tolerance. However, the emasculation procedure during hybridization raises tomato seed production costs and labor expenses. Using male sterility is an effective way to reduce the cost of hybrid seeds and ensure cultivar purity. Recent developments in CRISPR genome editing technology enabled tomato breeders to investigate the male sterility genes and to develop male-sterile tomato lines. In the current study, the tomato Acotinase (SlACO) gene family was investigated via in silico tools and functionally characterized with CRISPR/Cas9-mediated gene disruption. Genome-wide blast and HMM search represented two SlACO genes located on different tomato chromosomes. Both genes were estimated to have a segmental duplication in the tomato genome due to their identical motif and domain structure. One of these genes, SlACO2, showed a high expression profile in all generative cells of tomato. Therefore, the SlACO2 gene was targeted with two different gRNA/Cas9 constructs to identify their functional role in tomatoes. The gene was mutated in a total of six genome-edited tomato lines, two of which were homozygous. Surprisingly, pollen viability was found to be extremely low in mutant plants compared to their wild-type (WT) counterparts. Likewise, the number of seeds per fruit also sharply decreased more than fivefold in mutant lines (10–12 seeds) compared to that in WT (67 seeds). The pollen shape, anther structures, and flower colors/shapes were not significantly varied between the mutant and WT tomatoes. The mutated lines were also subjected to salt and mannitol-mediated drought stress to test the effect of SlACO2 on abiotic stress tolerance. The results of the study indicated that mutant tomatoes have higher tolerance with significantly lower MDA content under stress conditions. This is the first CRISPR-mediated characterization of ACO genes on pollen viability, seed formation, and abiotic stress tolerance in tomatoes. MDPI 2022-11-12 /pmc/articles/PMC9699144/ /pubmed/36430441 http://dx.doi.org/10.3390/ijms232213963 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Secgin, Zafer
Uluisik, Selman
Yıldırım, Kubilay
Abdulla, Mohamed Farah
Mostafa, Karam
Kavas, Musa
Genome-Wide Identification of the Aconitase Gene Family in Tomato (Solanum lycopersicum) and CRISPR-Based Functional Characterization of SlACO2 on Male-Sterility
title Genome-Wide Identification of the Aconitase Gene Family in Tomato (Solanum lycopersicum) and CRISPR-Based Functional Characterization of SlACO2 on Male-Sterility
title_full Genome-Wide Identification of the Aconitase Gene Family in Tomato (Solanum lycopersicum) and CRISPR-Based Functional Characterization of SlACO2 on Male-Sterility
title_fullStr Genome-Wide Identification of the Aconitase Gene Family in Tomato (Solanum lycopersicum) and CRISPR-Based Functional Characterization of SlACO2 on Male-Sterility
title_full_unstemmed Genome-Wide Identification of the Aconitase Gene Family in Tomato (Solanum lycopersicum) and CRISPR-Based Functional Characterization of SlACO2 on Male-Sterility
title_short Genome-Wide Identification of the Aconitase Gene Family in Tomato (Solanum lycopersicum) and CRISPR-Based Functional Characterization of SlACO2 on Male-Sterility
title_sort genome-wide identification of the aconitase gene family in tomato (solanum lycopersicum) and crispr-based functional characterization of slaco2 on male-sterility
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9699144/
https://www.ncbi.nlm.nih.gov/pubmed/36430441
http://dx.doi.org/10.3390/ijms232213963
work_keys_str_mv AT secginzafer genomewideidentificationoftheaconitasegenefamilyintomatosolanumlycopersicumandcrisprbasedfunctionalcharacterizationofslaco2onmalesterility
AT uluisikselman genomewideidentificationoftheaconitasegenefamilyintomatosolanumlycopersicumandcrisprbasedfunctionalcharacterizationofslaco2onmalesterility
AT yıldırımkubilay genomewideidentificationoftheaconitasegenefamilyintomatosolanumlycopersicumandcrisprbasedfunctionalcharacterizationofslaco2onmalesterility
AT abdullamohamedfarah genomewideidentificationoftheaconitasegenefamilyintomatosolanumlycopersicumandcrisprbasedfunctionalcharacterizationofslaco2onmalesterility
AT mostafakaram genomewideidentificationoftheaconitasegenefamilyintomatosolanumlycopersicumandcrisprbasedfunctionalcharacterizationofslaco2onmalesterility
AT kavasmusa genomewideidentificationoftheaconitasegenefamilyintomatosolanumlycopersicumandcrisprbasedfunctionalcharacterizationofslaco2onmalesterility