Cargando…

Transformers for Urban Sound Classification—A Comprehensive Performance Evaluation

Many relevant sound events occur in urban scenarios, and robust classification models are required to identify abnormal and relevant events correctly. These models need to identify such events within valuable time, being effective and prompt. It is also essential to determine for how much time these...

Descripción completa

Detalles Bibliográficos
Autores principales: Nogueira, Ana Filipa Rodrigues, Oliveira, Hugo S., Machado, José J. M., Tavares, João Manuel R. S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9699161/
https://www.ncbi.nlm.nih.gov/pubmed/36433471
http://dx.doi.org/10.3390/s22228874
Descripción
Sumario:Many relevant sound events occur in urban scenarios, and robust classification models are required to identify abnormal and relevant events correctly. These models need to identify such events within valuable time, being effective and prompt. It is also essential to determine for how much time these events prevail. This article presents an extensive analysis developed to identify the best-performing model to successfully classify a broad set of sound events occurring in urban scenarios. Analysis and modelling of Transformer models were performed using available public datasets with different sets of sound classes. The Transformer models’ performance was compared to the one achieved by the baseline model and end-to-end convolutional models. Furthermore, the benefits of using pre-training from image and sound domains and data augmentation techniques were identified. Additionally, complementary methods that have been used to improve the models’ performance and good practices to obtain robust sound classification models were investigated. After an extensive evaluation, it was found that the most promising results were obtained by employing a Transformer model using a novel Adam optimizer with weight decay and transfer learning from the audio domain by reusing the weights from AudioSet, which led to an accuracy score of 89.8% for the UrbanSound8K dataset, 95.8% for the ESC-50 dataset, and 99% for the ESC-10 dataset, respectively.