Cargando…

Focal DETR: Target-Aware Token Design for Transformer-Based Object Detection

In this paper, we propose a novel target-aware token design for transformer-based object detection. To tackle the target attribute diffusion challenge of transformer-based object detection, we propose two key components in the new target-aware token design mechanism. Firstly, we propose a target-awa...

Descripción completa

Detalles Bibliográficos
Autores principales: Xie, Tianming, Zhang, Zhonghao, Tian, Jing, Ma, Lihong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9699219/
https://www.ncbi.nlm.nih.gov/pubmed/36433282
http://dx.doi.org/10.3390/s22228686
Descripción
Sumario:In this paper, we propose a novel target-aware token design for transformer-based object detection. To tackle the target attribute diffusion challenge of transformer-based object detection, we propose two key components in the new target-aware token design mechanism. Firstly, we propose a target-aware sampling module, which forces the sampling patterns to converge inside the target region and obtain its representative encoded features. More specifically, a set of four sampling patterns are designed, including small and large patterns, which focus on the detailed and overall characteristics of a target, respectively, as well as the vertical and horizontal patterns, which handle the object’s directional structures. Secondly, we propose a target-aware key-value matrix. This is a unified, learnable, feature-embedding matrix which is directly weighted on the feature map to reduce the interference of non-target regions. With such a new design, we propose a new variant of the transformer-based object-detection model, called Focal DETR, which achieves superior performance over the state-of-the-art transformer-based object-detection models on the COCO object-detection benchmark dataset. Experimental results demonstrate that our Focal DETR achieves a 44.7 AP in the coco2017 test set, which is 2.7 AP and 0.9 AP higher than the DETR and deformable DETR using the same training strategy and the same feature-extraction network.