Cargando…

The Multiple Roles of Pericytes in Vascular Formation and Microglial Functions in the Brain

In the capillary walls, vascular endothelial cells are covered with mural cells, such as smooth muscle cells and pericytes. Although pericytes had been thought to play simply a structural role, emerging evidence has highlighted their multiple functions in the embryonic, postnatal, and adult brain. A...

Descripción completa

Detalles Bibliográficos
Autor principal: Hattori, Yuki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9699346/
https://www.ncbi.nlm.nih.gov/pubmed/36362989
http://dx.doi.org/10.3390/life12111835
Descripción
Sumario:In the capillary walls, vascular endothelial cells are covered with mural cells, such as smooth muscle cells and pericytes. Although pericytes had been thought to play simply a structural role, emerging evidence has highlighted their multiple functions in the embryonic, postnatal, and adult brain. As the central nervous system (CNS) develops, the brain’s vascular structure gradually matures into a hierarchical network, which is crucial for the proper development of neural lineage cells by providing oxygen and nutrients. Pericytes play an essential role in vascular formation and regulate blood‒brain barrier (BBB) integrity as a component of the neurovascular unit (NVU), in collaboration with other cells, such as vascular endothelial cells, astrocytes, neurons, and microglia. Microglia, the resident immune cells of the CNS, colonize the brain at embryonic day (E) 9.5 in mice. These cells not only support the development and maturation of neural lineage cells but also help in vascular formation through their extensive migration. Recent studies have demonstrated that pericytes directly contact microglia in the CNS, and their interactions have a profound effect on physiological and pathological aspects. This review summarizes the function of pericytes, focusing on the interplay between pericytes and microglia.