Cargando…

High Glucose-Induced Cardiomyocyte Damage Involves Interplay between Endothelin ET-1/ET(A)/ET(B) Receptor and mTOR Pathway

Patients with type two diabetes mellitus (T2DM) are at increased risk for cardiovascular diseases. Impairments of endothelin-1 (ET-1) signaling and mTOR pathway have been implicated in diabetic cardiomyopathies. However, the molecular interplay between the ET-1 and mTOR pathway under high glucose (H...

Descripción completa

Detalles Bibliográficos
Autores principales: Pandey, Sudhir, Madreiter-Sokolowski, Corina T., Mangmool, Supachoke, Parichatikanond, Warisara
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9699386/
https://www.ncbi.nlm.nih.gov/pubmed/36430296
http://dx.doi.org/10.3390/ijms232213816
Descripción
Sumario:Patients with type two diabetes mellitus (T2DM) are at increased risk for cardiovascular diseases. Impairments of endothelin-1 (ET-1) signaling and mTOR pathway have been implicated in diabetic cardiomyopathies. However, the molecular interplay between the ET-1 and mTOR pathway under high glucose (HG) conditions in H9c2 cardiomyoblasts has not been investigated. We employed MTT assay, qPCR, western blotting, fluorescence assays, and confocal microscopy to assess the oxidative stress and mitochondrial damage under hyperglycemic conditions in H9c2 cells. Our results showed that HG-induced cellular stress leads to a significant decline in cell survival and an impairment in the activation of ET(A)-R/ET(B)-R and the mTOR main components, Raptor and Rictor. These changes induced by HG were accompanied by a reactive oxygen species (ROS) level increase and mitochondrial membrane potential (MMP) loss. In addition, the fragmentation of mitochondria and a decrease in mitochondrial size were observed. However, the inhibition of either ET(A)-R alone by ambrisentan or ET(A)-R/ET(B)-R by bosentan or the partial blockage of the mTOR function by silencing Raptor or Rictor counteracted those adverse effects on the cellular function. Altogether, our findings prove that ET-1 signaling under HG conditions leads to a significant mitochondrial dysfunction involving contributions from the mTOR pathway.