Cargando…

Design and Feasibility Study of MRG–Based Variable Stiffness Soft Robot

The conventional pneumatic soft robot has the problem of insufficient stiffness, while in the magnetorheological soft robot, the magnetic field provided by electromagnet has the disadvantage of oversized structure and poor flexibility. This paper presents a variable stiffness pneumatic soft robot ba...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Luojing, Hu, Hongsheng, Ouyang, Qing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9699410/
https://www.ncbi.nlm.nih.gov/pubmed/36422465
http://dx.doi.org/10.3390/mi13112036
Descripción
Sumario:The conventional pneumatic soft robot has the problem of insufficient stiffness, while in the magnetorheological soft robot, the magnetic field provided by electromagnet has the disadvantage of oversized structure and poor flexibility. This paper presents a variable stiffness pneumatic soft robot based on magnetorheological grease (MRG) to solve these problems. Its three soft fingers cooperate with the adjustable gripper to adjust the gripping range for the robot hand, and it is used to provide gripping driving force through the bending drive. The MRG layer is designed on the gripping surface to provide adaptivity and rigid support for the gripped objects. A magnetic-air structure consisting of a Halbach array and Halbach array actuator is designed inside the soft fingers to provide a flexible magnetic field for the MRG layer. Theoretical and simulation analysis is carried out, and the results show that the state of the MRG changes and the stiffness of the clamping surface changes under the working pressure of 30 kPa. Finally, the experiment further proves the variable and high adaptivity of the surface stiffness of the gripping surface to reduce the damage to the gripped objects.