Cargando…

Geo-Distribution Patterns of Soil Fungal Community of Pennisetum flaccidum in Tibet

Pennisetum flaccidum can be used as a pioneer species for the restoration of degraded grasslands and as a high-quality forage for local yak and sheep in alpine regions. The geographical distribution pattern of soil fungal community can modify that of P. flaccidum. A field survey along 32 sampling si...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Guangyu, Shen, Zhenxi, Fu, Gang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9699603/
https://www.ncbi.nlm.nih.gov/pubmed/36422051
http://dx.doi.org/10.3390/jof8111230
Descripción
Sumario:Pennisetum flaccidum can be used as a pioneer species for the restoration of degraded grasslands and as a high-quality forage for local yak and sheep in alpine regions. The geographical distribution pattern of soil fungal community can modify that of P. flaccidum. A field survey along 32 sampling sites was conducted to explore the geo-distribution patterns of soil fungal community of P. flaccidum in Tibet. Soil fungal species, phylogenetic and function diversity generally had a closer correlation with longitude/elevation than latitude. The geo-distribution patterns of soil fungal species, phylogenetic and function diversity varied with soil depth. Soil fungal species, phylogenetic and function diversity had dissimilar geo-distribution patterns. Precipitation had stronger impacts on total abundance, species α-diversity, phylogenetic α-diversity, and function β-diversity than temperature for both topsoil (0–10 cm depth) and subtopsoil (10–20 cm depth). Furthermore, precipitation had stronger impacts on function α-diversity for topsoil, species β-diversity for topsoil, and phylogenetic β-diversity for subtopsoil than temperature. The combination of species, phylogenetic and function diversity can better reflect geo-distribution patterns of soil fungal community. Compared to global warming, the impact of precipitation change on the variation in soil fungal community of P. flaccidum should be given more attention.