Cargando…
Reliability-Based Design Analysis for FRP Reinforced Compression Yield Beams
Fiber-reinforced polymers (FRPs) provide promising prospects for replacing steel bars in traditional reinforced concrete structures. However, the use of FRP as tension bars in concrete beams leads to insufficient ductility because of its elastic characteristics. A newly developed compression-yieldin...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9699639/ https://www.ncbi.nlm.nih.gov/pubmed/36432978 http://dx.doi.org/10.3390/polym14224846 |
_version_ | 1784839123575504896 |
---|---|
author | Feng, Lin Li, Peng-Da Huang, Xiao-Xu Wu, Yu-Fei |
author_facet | Feng, Lin Li, Peng-Da Huang, Xiao-Xu Wu, Yu-Fei |
author_sort | Feng, Lin |
collection | PubMed |
description | Fiber-reinforced polymers (FRPs) provide promising prospects for replacing steel bars in traditional reinforced concrete structures. However, the use of FRP as tension bars in concrete beams leads to insufficient ductility because of its elastic characteristics. A newly developed compression-yielding (CY) beam has successfully solved this issue. Instead of tensile reinforcement yield, the ductile deformation of a CY beam is realized by the compression yield of a CY block in the compressive region. Another important feature is that the CY block is also the fuse of the beam, where material damage to the beam is concentrated in the CY block region and can be easily replaced. As a load-bearing recoverable and ductile structure, it is necessary to conduct a reliability-based design analysis and recommend reduction factors for this new structure. In this study, the function for calculating the failure probability of CY beams is proposed, semi-probabilistic design recommendations are presented, and Monte Carlo simulation (MCS) is adopted as a reliability analysis method. This study discusses the influence of the possible characteristics of the critical variables on reliability and provides the reliability index with different reduction factors to guide the design of the CY beam. These analyses indicate that the reliability index can be improved from the material design of the CY block in greater strength f(b), smaller depth, smaller coefficient of variation of f(b), and yield modulus ratio ξ. This study also shows that compared with the design of FRP concrete beams, the ductile failure mode of the CY beams allows a lower safety factor to meet safety requirements, which significantly reduces construction costs and avoids over-designing the load-bearing capacity. |
format | Online Article Text |
id | pubmed-9699639 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96996392022-11-26 Reliability-Based Design Analysis for FRP Reinforced Compression Yield Beams Feng, Lin Li, Peng-Da Huang, Xiao-Xu Wu, Yu-Fei Polymers (Basel) Article Fiber-reinforced polymers (FRPs) provide promising prospects for replacing steel bars in traditional reinforced concrete structures. However, the use of FRP as tension bars in concrete beams leads to insufficient ductility because of its elastic characteristics. A newly developed compression-yielding (CY) beam has successfully solved this issue. Instead of tensile reinforcement yield, the ductile deformation of a CY beam is realized by the compression yield of a CY block in the compressive region. Another important feature is that the CY block is also the fuse of the beam, where material damage to the beam is concentrated in the CY block region and can be easily replaced. As a load-bearing recoverable and ductile structure, it is necessary to conduct a reliability-based design analysis and recommend reduction factors for this new structure. In this study, the function for calculating the failure probability of CY beams is proposed, semi-probabilistic design recommendations are presented, and Monte Carlo simulation (MCS) is adopted as a reliability analysis method. This study discusses the influence of the possible characteristics of the critical variables on reliability and provides the reliability index with different reduction factors to guide the design of the CY beam. These analyses indicate that the reliability index can be improved from the material design of the CY block in greater strength f(b), smaller depth, smaller coefficient of variation of f(b), and yield modulus ratio ξ. This study also shows that compared with the design of FRP concrete beams, the ductile failure mode of the CY beams allows a lower safety factor to meet safety requirements, which significantly reduces construction costs and avoids over-designing the load-bearing capacity. MDPI 2022-11-11 /pmc/articles/PMC9699639/ /pubmed/36432978 http://dx.doi.org/10.3390/polym14224846 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Feng, Lin Li, Peng-Da Huang, Xiao-Xu Wu, Yu-Fei Reliability-Based Design Analysis for FRP Reinforced Compression Yield Beams |
title | Reliability-Based Design Analysis for FRP Reinforced Compression Yield Beams |
title_full | Reliability-Based Design Analysis for FRP Reinforced Compression Yield Beams |
title_fullStr | Reliability-Based Design Analysis for FRP Reinforced Compression Yield Beams |
title_full_unstemmed | Reliability-Based Design Analysis for FRP Reinforced Compression Yield Beams |
title_short | Reliability-Based Design Analysis for FRP Reinforced Compression Yield Beams |
title_sort | reliability-based design analysis for frp reinforced compression yield beams |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9699639/ https://www.ncbi.nlm.nih.gov/pubmed/36432978 http://dx.doi.org/10.3390/polym14224846 |
work_keys_str_mv | AT fenglin reliabilitybaseddesignanalysisforfrpreinforcedcompressionyieldbeams AT lipengda reliabilitybaseddesignanalysisforfrpreinforcedcompressionyieldbeams AT huangxiaoxu reliabilitybaseddesignanalysisforfrpreinforcedcompressionyieldbeams AT wuyufei reliabilitybaseddesignanalysisforfrpreinforcedcompressionyieldbeams |