Cargando…
Network Architecture for Optimizing Deep Deterministic Policy Gradient Algorithms
The traditional Deep Deterministic Policy Gradient (DDPG) algorithm has been widely used in continuous action spaces, but it still suffers from the problems of easily falling into local optima and large error fluctuations. Aiming at these deficiencies, this paper proposes a dual-actor-dual-critic DD...
Autores principales: | Zhang, Haifei, Xu, Jian, Zhang, Jian, Liu, Quan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9699738/ https://www.ncbi.nlm.nih.gov/pubmed/36438689 http://dx.doi.org/10.1155/2022/1117781 |
Ejemplares similares
-
A dosing strategy model of deep deterministic policy gradient algorithm for sepsis patients
por: Lin, Tianlai, et al.
Publicado: (2023) -
An enhanced deep deterministic policy gradient algorithm for intelligent control of robotic arms
por: Dong, Ruyi, et al.
Publicado: (2023) -
Dynamical Motor Control Learned with Deep Deterministic Policy Gradient
por: Shi, Haibo, et al.
Publicado: (2018) -
Optimization of
Profile Control and Oil Displacement
Scheme Parameters Based on Deep Deterministic Policy Gradient
por: Tan, Chaodong, et al.
Publicado: (2023) -
Implementation of Deep Deterministic Policy Gradients for Controlling Dynamic Bipedal Walking
por: Liu, Chujun, et al.
Publicado: (2019)