Cargando…
Space-Distributed Traffic-Enhanced LSTM-Based Machine Learning Model for COVID-19 Incidence Forecasting
The COVID-19 virus continues to generate waves of infections around the world. With major areas in developing countries still lagging behind in vaccination campaigns, the risk of new variants that can cause re-infections worldwide makes the monitoring and forecasting of the evolution of the virus a...
Autor principal: | Muñoz-Organero, Mario |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9699744/ https://www.ncbi.nlm.nih.gov/pubmed/36438691 http://dx.doi.org/10.1155/2022/4307708 |
Ejemplares similares
-
A new RNN based machine learning model to forecast COVID-19 incidence, enhanced by the use of mobility data from the bike-sharing service in Madrid
por: Muñoz-Organero, Mario, et al.
Publicado: (2023) -
Deep Spatiotemporal Model for COVID-19 Forecasting
por: Muñoz-Organero, Mario, et al.
Publicado: (2022) -
Development and evaluation of bidirectional LSTM freeway traffic forecasting models using simulation data
por: Abduljabbar, Rusul L., et al.
Publicado: (2021) -
Machine Learning Model Application and Comparison in Actuated Traffic Signal Forecasting
por: Xie, Feng, et al.
Publicado: (2023) -
Deep learning via LSTM models for COVID-19 infection forecasting in India
por: Chandra, Rohitash, et al.
Publicado: (2022)