Cargando…

An Ensemble of Deep Learning Enabled Brain Stroke Classification Model in Magnetic Resonance Images

Brain stroke is a major cause of global death and it necessitates earlier identification process to reduce the mortality rate. Magnetic resonance imaging (MRI) techniques is a commonly available imaging modality used to diagnose brain stroke. Presently, machine learning (ML) and deep learning (DL) m...

Descripción completa

Detalles Bibliográficos
Autores principales: Eshmawi, Ala' A., Khayyat, Mashael, Algarni, Abeer D., Hilali-Jaghdam, Inès
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9699768/
https://www.ncbi.nlm.nih.gov/pubmed/36437817
http://dx.doi.org/10.1155/2022/7815434
Descripción
Sumario:Brain stroke is a major cause of global death and it necessitates earlier identification process to reduce the mortality rate. Magnetic resonance imaging (MRI) techniques is a commonly available imaging modality used to diagnose brain stroke. Presently, machine learning (ML) and deep learning (DL) models can be extremely utilized for disease detection and classification processes. Amongst the available approaches, the convolutional neural network (CNN) models have been widely used for computer vision and image processing issues such as ImageNet, facial detection, and digit classification. In this article, a novel computer aided diagnosis (CAD) based brain stroke detection and classification (CAD-BSDC) model has been developed for MRI images. The proposed CAD-BSDC technique aims in classifying the provided MR brain image as normal or abnormal. The CAD-BSDC technique involves different subprocesses such as preprocessing, feature extraction, and classification. Firstly, the input image undergoes preprocessing using adaptive thresholding (AT) technique for improving the image quality. Followed by, an ensemble of feature extractors such as MobileNet, CapsuleNet, and EfficientNet models are used. Besides, the hyperparameter tuning of the deep learning models takes place using the improved dragonfly optimization (IDFO) algorithm. Moreover, satin bowerbird optimization (SBO) based stacked autoencoder (SAE) is used for the classification of brain stroke. The design of optimal SAE using the SBO algorithm shows the novelty of the work. The performance of the presented technique was validated utilizing benchmark dataset which includes T2-weighted MR brain image collected from the axial axis with size of 256 × 256. The simulation outcomes indicated the promising efficiency of the proposed CAD-BSDC technique over the latest state of art approaches in terms of various performance measures.