Cargando…
A novel Bayesian ensembling model for wind power forecasting
Precise and robust wind power prediction can effectively alleviate the problem caused by the randomness and volatility of wind power. Ensemble learning can successfully improve forecasting precision and robustness, and quantify the uncertainty of the prediction. This paper presents a new ensemble pr...
Autores principales: | Tang, Jingwei, Hu, Jianming, Heng, Jiani, Liu, Zhi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9699981/ https://www.ncbi.nlm.nih.gov/pubmed/36444257 http://dx.doi.org/10.1016/j.heliyon.2022.e11599 |
Ejemplares similares
-
Mixture EMOS model for calibrating ensemble forecasts of wind speed
por: Baran, S., et al.
Publicado: (2016) -
Ensemble Nonlinear Autoregressive Exogenous Artificial Neural Networks for Short-Term Wind Speed and Power Forecasting
por: Men, Zhongxian, et al.
Publicado: (2014) -
Ensemble downscaling in coupled solar wind-magnetosphere modeling for space weather forecasting
por: Owens, M J, et al.
Publicado: (2014) -
Research on Wind Power Short-Term Forecasting Method Based on Temporal Convolutional Neural Network and Variational Modal Decomposition
por: Tang, Jingwei, et al.
Publicado: (2022) -
EMD-based gray combined forecasting model - Application to long-term forecasting of wind power generation
por: Ran, Minghao, et al.
Publicado: (2023)