Cargando…
Unified machine learning protocol for copolymer structure-property predictions
Structure-property relationships are extremely valuable when predicting the properties of polymers. This protocol demonstrates a step-by-step approach, based on multiple machine learning (ML) architectures, which is capable of processing copolymer types such as alternating, random, block, and gradie...
Autores principales: | Tao, Lei, Arbaugh, Tom, Byrnes, John, Varshney, Vikas, Li, Ying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9700038/ https://www.ncbi.nlm.nih.gov/pubmed/36595914 http://dx.doi.org/10.1016/j.xpro.2022.101875 |
Ejemplares similares
-
Machine learning strategies for the structure-property relationship of copolymers
por: Tao, Lei, et al.
Publicado: (2022) -
Protocol to predict mechanical properties of multi-element ceramics using machine learning
por: Tang, Yunqing, et al.
Publicado: (2022) -
Protocol for state-of-health prediction of lithium-ion batteries based on machine learning
por: Shu, Xing, et al.
Publicado: (2022) -
Protocol for CAROM: A machine learning tool to predict post-translational regulation from metabolic signatures
por: Smith, Kirk, et al.
Publicado: (2022) -
Multivariable prediction models for health care spending using machine learning: a protocol of a systematic review
por: Huang, Andrew W., et al.
Publicado: (2022)