Cargando…

Ayurvedic formulations amalaki rasayana and rasa sindoor improve age-associated memory deficits in mice by modulating dendritic spine densities

BACKGROUND: Emerging reports indicate that age-associated cognitive decline begins with the transition from young to middle-aged, and this neurological condition manifests mainly due to the progressive impairment in the adaptive homeostasis process. Moreover, cognitive decline is associated with neu...

Descripción completa

Detalles Bibliográficos
Autores principales: Verma, Bhupender, Sinha, Priyanka, Ganesh, Subramaniam
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9700303/
https://www.ncbi.nlm.nih.gov/pubmed/36436297
http://dx.doi.org/10.1016/j.jaim.2022.100636
Descripción
Sumario:BACKGROUND: Emerging reports indicate that age-associated cognitive decline begins with the transition from young to middle-aged, and this neurological condition manifests mainly due to the progressive impairment in the adaptive homeostasis process. Moreover, cognitive decline is associated with neurodegenerative changes in older adults. OBJECTIVE: Previous studies have shown that the administration of Ayurvedic formulations restores the homeostatic pathways and ameliorates neurodegeneration in animal models of neurodegenerative diseases. Therefore, we wanted to check whether Ayurvedic formulations can rescue or delay the age-associated cognitive decline in middle-aged mice. MATERIAL AND METHODS: We fed two-month-old mice with amalaki aasayana (AR, 1025 mg/kg per day) or rasa sindoor (RS, 41 mg/kg per day) mixed in a gelatin-based jelly for six months. Mice eating regular chow or blank jelly served as control. Subsequently, we looked at the improvements in the cognitive and behavioural traits of the treated animals. We have also analysed the effect of these formulations on the dendritic processes of neurons, glial activation, and the formation of corpora amylacea. RESULTS: We found a significant improvement in episodic, working- and reference-spatiotemporal memory in animals fed on AR or RS. Microscopic analyses revealed a significant increase in the dendritic spine density in the apical dendrites of the hippocampal pyramidal neurons. The treatment, however, did not significantly affect gliosis and corpora amylacea in the brains. CONCLUSIONS: Both AR and RS showed beneficial effects on memory functions of the middle-aged mice, possibly due to their effect on the dendritic spine densities. Our findings provide strong evidence to conclude that formulations AR and RS can prevent or delay the onset of age-associated cognitive decline.