Cargando…
Laminin-511 Activates the Human Induced Pluripotent Stem Cell Survival via α6β1 Integrin-Fyn-RhoA-ROCK Signaling
In human induced pluripotent stem cells (hiPSCs), laminin-511/α6β1 integrin interacts with E-cadherin, an intercellular adhesion molecule, to induce the activation of the phosphatidylinositol 3-kinase (PI3K)-dependent signaling pathway. The interaction between laminin-511/α6β1 integrin and E-cadheri...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Mary Ann Liebert, Inc., publishers
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9700348/ https://www.ncbi.nlm.nih.gov/pubmed/35726387 http://dx.doi.org/10.1089/scd.2022.0010 |
_version_ | 1784839290649313280 |
---|---|
author | Nakashima, Yoshiki Tsukahara, Masayoshi |
author_facet | Nakashima, Yoshiki Tsukahara, Masayoshi |
author_sort | Nakashima, Yoshiki |
collection | PubMed |
description | In human induced pluripotent stem cells (hiPSCs), laminin-511/α6β1 integrin interacts with E-cadherin, an intercellular adhesion molecule, to induce the activation of the phosphatidylinositol 3-kinase (PI3K)-dependent signaling pathway. The interaction between laminin-511/α6β1 integrin and E-cadherin, an intercellular adhesion molecule, results in protection against apoptosis through the proto-oncogene tyrosine-protein kinase Fyn(Fyn)-RhoA-ROCK signaling pathway and the Ras homolog gene family member A (RhoA)/Rho kinase (ROCK) signaling pathway (the major pathway for cell death). In this article, the impact of laminin-511 on hiPSC on α6β1 integrin-Fyn-RhoA-ROCK signaling is discussed and explored along with validation experiments. PIK3CA mRNA (mean [standard deviation {SD}]: iMatrix-511, 1.00 [0.61]; collagen+MFGE8, 0.023 [0.02]; **P < 0.01; n = 6) and PIK3R1 mRNA (mean [SD]: iMatrix-511, 1.00 [0.79]; collagen+MFGE8, 0.040 [0.06]; *P < 0.05; n = 6) were upregulated by iMatrix-511 resulting from an increased expression of Integrin α6 mRNA (mean [SD]: iMatrix-511, 1.00 [0.42]; collagen+MFGE8, 0.23 [0.05]; **P < 0.01; n = 6). The iMatrix-511 increased the expression of p120-Catenin mRNA (mean [SD]: iMatrix-511, 1.00 [0.71]; collagen+MFGE8, 0.025 [0.03]; **P < 0.01; n = 6) and RAC1 mRNA (mean [SD]: iMatrix-511, 1.00 [0.28]; collagen+MFGE8, 0.39 [0.15]; **P < 0.01; n = 6) by increasing the expression of E-cadherin mRNA (mean [SD]: iMatrix-511, 1.00 [0.38]; collagen+MFGE8, 0.16 [0.11]; **P < 0.01; n = 6). As a result, iMatrix-511 increased the expression of P190 RhoGAP (GTPase-activating proteins) mRNA, such as ARHGAP1 mRNA (mean [SD]: iMatrix-511, 1.00 [0.57]; collagen+MFGE8, 0.032 [0.03]; **P < 0.01; n = 6), ARHGAP4 mRNA (mean [SD]: iMatrix-511, 1.00 [0.56]; collagen+MFGE8, 0.039 [0.049]; **P < 0.01; n = 6), and ARHGAP5 mRNA (mean [SD]: iMatrix-511, 1.00 [0.39]; collagen+MFGE8, 0.063 [0.043]; **P < 0.01; n = 6). Western blotting showed that phospho-Rac1 remained in the cytoplasm and phospho-Fyn showed nuclear transition in iPSCs cultured on iMatrix-511. Proteome analysis showed that PI3K signaling was enhanced and cytoskeletal actin was activated in iPSCs cultured on iMatrix-511. In conclusion, laminin-511 strongly activated the cell survival by promoting α6β1 integrin-Fyn-RhoA-ROCK signaling in hiPSCs. |
format | Online Article Text |
id | pubmed-9700348 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Mary Ann Liebert, Inc., publishers |
record_format | MEDLINE/PubMed |
spelling | pubmed-97003482022-11-30 Laminin-511 Activates the Human Induced Pluripotent Stem Cell Survival via α6β1 Integrin-Fyn-RhoA-ROCK Signaling Nakashima, Yoshiki Tsukahara, Masayoshi Stem Cells Dev Original Research Reports In human induced pluripotent stem cells (hiPSCs), laminin-511/α6β1 integrin interacts with E-cadherin, an intercellular adhesion molecule, to induce the activation of the phosphatidylinositol 3-kinase (PI3K)-dependent signaling pathway. The interaction between laminin-511/α6β1 integrin and E-cadherin, an intercellular adhesion molecule, results in protection against apoptosis through the proto-oncogene tyrosine-protein kinase Fyn(Fyn)-RhoA-ROCK signaling pathway and the Ras homolog gene family member A (RhoA)/Rho kinase (ROCK) signaling pathway (the major pathway for cell death). In this article, the impact of laminin-511 on hiPSC on α6β1 integrin-Fyn-RhoA-ROCK signaling is discussed and explored along with validation experiments. PIK3CA mRNA (mean [standard deviation {SD}]: iMatrix-511, 1.00 [0.61]; collagen+MFGE8, 0.023 [0.02]; **P < 0.01; n = 6) and PIK3R1 mRNA (mean [SD]: iMatrix-511, 1.00 [0.79]; collagen+MFGE8, 0.040 [0.06]; *P < 0.05; n = 6) were upregulated by iMatrix-511 resulting from an increased expression of Integrin α6 mRNA (mean [SD]: iMatrix-511, 1.00 [0.42]; collagen+MFGE8, 0.23 [0.05]; **P < 0.01; n = 6). The iMatrix-511 increased the expression of p120-Catenin mRNA (mean [SD]: iMatrix-511, 1.00 [0.71]; collagen+MFGE8, 0.025 [0.03]; **P < 0.01; n = 6) and RAC1 mRNA (mean [SD]: iMatrix-511, 1.00 [0.28]; collagen+MFGE8, 0.39 [0.15]; **P < 0.01; n = 6) by increasing the expression of E-cadherin mRNA (mean [SD]: iMatrix-511, 1.00 [0.38]; collagen+MFGE8, 0.16 [0.11]; **P < 0.01; n = 6). As a result, iMatrix-511 increased the expression of P190 RhoGAP (GTPase-activating proteins) mRNA, such as ARHGAP1 mRNA (mean [SD]: iMatrix-511, 1.00 [0.57]; collagen+MFGE8, 0.032 [0.03]; **P < 0.01; n = 6), ARHGAP4 mRNA (mean [SD]: iMatrix-511, 1.00 [0.56]; collagen+MFGE8, 0.039 [0.049]; **P < 0.01; n = 6), and ARHGAP5 mRNA (mean [SD]: iMatrix-511, 1.00 [0.39]; collagen+MFGE8, 0.063 [0.043]; **P < 0.01; n = 6). Western blotting showed that phospho-Rac1 remained in the cytoplasm and phospho-Fyn showed nuclear transition in iPSCs cultured on iMatrix-511. Proteome analysis showed that PI3K signaling was enhanced and cytoskeletal actin was activated in iPSCs cultured on iMatrix-511. In conclusion, laminin-511 strongly activated the cell survival by promoting α6β1 integrin-Fyn-RhoA-ROCK signaling in hiPSCs. Mary Ann Liebert, Inc., publishers 2022-11-01 2022-11-08 /pmc/articles/PMC9700348/ /pubmed/35726387 http://dx.doi.org/10.1089/scd.2022.0010 Text en © Yoshiki Nakashima et al., 2022; Published by Mary Ann Liebert, Inc. https://creativecommons.org/licenses/by/4.0/This Open Access article is distributed under the terms of the Creative Commons License [CC-BY] (http://creativecommons.org/licenses/by/4.0 (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Reports Nakashima, Yoshiki Tsukahara, Masayoshi Laminin-511 Activates the Human Induced Pluripotent Stem Cell Survival via α6β1 Integrin-Fyn-RhoA-ROCK Signaling |
title | Laminin-511 Activates the Human Induced Pluripotent Stem Cell Survival via α6β1 Integrin-Fyn-RhoA-ROCK Signaling |
title_full | Laminin-511 Activates the Human Induced Pluripotent Stem Cell Survival via α6β1 Integrin-Fyn-RhoA-ROCK Signaling |
title_fullStr | Laminin-511 Activates the Human Induced Pluripotent Stem Cell Survival via α6β1 Integrin-Fyn-RhoA-ROCK Signaling |
title_full_unstemmed | Laminin-511 Activates the Human Induced Pluripotent Stem Cell Survival via α6β1 Integrin-Fyn-RhoA-ROCK Signaling |
title_short | Laminin-511 Activates the Human Induced Pluripotent Stem Cell Survival via α6β1 Integrin-Fyn-RhoA-ROCK Signaling |
title_sort | laminin-511 activates the human induced pluripotent stem cell survival via α6β1 integrin-fyn-rhoa-rock signaling |
topic | Original Research Reports |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9700348/ https://www.ncbi.nlm.nih.gov/pubmed/35726387 http://dx.doi.org/10.1089/scd.2022.0010 |
work_keys_str_mv | AT nakashimayoshiki laminin511activatesthehumaninducedpluripotentstemcellsurvivalviaa6b1integrinfynrhoarocksignaling AT tsukaharamasayoshi laminin511activatesthehumaninducedpluripotentstemcellsurvivalviaa6b1integrinfynrhoarocksignaling |