Cargando…
Protocol to explain graph neural network predictions using an edge-centric Shapley value-based approach
Here we present EdgeSHAPer, a workflow for explaining graph neural networks by approximating Shapley values using Monte Carlo sampling. In this protocol, we describe steps to execute Python scripts for a chemical dataset from the original publication; however, this approach is also applicable to any...
Autores principales: | Mastropietro, Andrea, Pasculli, Giuseppe, Bajorath, Jürgen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9700376/ https://www.ncbi.nlm.nih.gov/pubmed/36595907 http://dx.doi.org/10.1016/j.xpro.2022.101887 |
Ejemplares similares
-
EdgeSHAPer: Bond-centric Shapley value-based explanation method for graph neural networks
por: Mastropietro, Andrea, et al.
Publicado: (2022) -
Calculation of exact Shapley values for explaining support vector machine models using the radial basis function kernel
por: Mastropietro, Andrea, et al.
Publicado: (2023) -
Explaining Multiclass Compound Activity Predictions Using Counterfactuals and Shapley Values
por: Lamens, Alec, et al.
Publicado: (2023) -
XGDAG: explainable gene–disease associations via graph neural networks
por: Mastropietro, Andrea, et al.
Publicado: (2023) -
Calculation of exact Shapley values for support vector machines with Tanimoto kernel enables model interpretation
por: Feldmann, Christian, et al.
Publicado: (2022)