Cargando…

Ceftolozane/Tazobactam Activity Against Drug-Resistant Pseudomonas aeruginosa and Enterobacterales Causing Healthcare-Associated Infections in Eight Asian Countries: Report from an Antimicrobial Surveillance Program (2016–2018)

PURPOSE: To evaluate the in vitro activity of ceftolozane/tazobactam and comparator agents tested against Pseudomonas aeruginosa and Enterobacterales isolates from hospitalised patients in Asia. Ceftolozane/tazobactam is an antipseudomonal cephalosporin combined with a well-established β-lactamase i...

Descripción completa

Detalles Bibliográficos
Autores principales: Pfaller, Michael, Shortridge, Dee, Chen, Wei-Ting, Sader, Helio, Castanheira, Mariana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9700433/
https://www.ncbi.nlm.nih.gov/pubmed/36444213
http://dx.doi.org/10.2147/IDR.S387097
Descripción
Sumario:PURPOSE: To evaluate the in vitro activity of ceftolozane/tazobactam and comparator agents tested against Pseudomonas aeruginosa and Enterobacterales isolates from hospitalised patients in Asia. Ceftolozane/tazobactam is an antipseudomonal cephalosporin combined with a well-established β-lactamase inhibitor. METHODS: A total of 2038 Gram-negative organisms (376 P. aeruginosa and 1662 Enterobacterales) were collected consecutively using a prevalence-based approach from 11 medical centres. Organisms were susceptibility tested by broth microdilution according to CLSI guidelines. CLSI and EUCAST breakpoint criteria were used. RESULTS: Ceftolozane/tazobactam was the most potent (MIC(50/90), 0.5/4 mg/L) β-lactam agent tested against P. aeruginosa isolates, inhibiting 91.0% of the isolates at an MIC of ≤4 mg/L. P. aeruginosa exhibited high rates of susceptibility to amikacin (92.0/92.0% [CLSI/EUCAST]) and colistin by EUCAST criteria only (99.2% intermediate [CLSI]/99.2% susceptible [EUCAST]). Ceftolozane/tazobactam (MIC(50/90), 0.25/16 mg/L; 86.8/86.8% susceptible [CLSI/EUCAST]) and meropenem (MIC(50/90), 0.03/0.12 mg/L; 93.0/93.3% susceptible [CLSI/EUCAST]) were the most active compounds tested against Enterobacterales. Isolates displayed susceptibility rates to other β-lactam agents, ranging from 81.5/77.7% for piperacillin/tazobactam, 66.0/64.5% for cefepime, and 65.3/60.9% for ceftazidime using CLSI/EUCAST breakpoints. Among the Enterobacterales isolates, 6.8% were carbapenem-resistant Enterobacterales (CRE) and 29.6% exhibited an extended-spectrum β-lactamase (ESBL) non-CRE phenotype. Ceftolozane/tazobactam showed good activity against ESBL non-CRE phenotype strains of Enterobacterales (MIC(50/90), 0.5/8 mg/L; 84.8/84.8% susceptible), but not against isolates with a CRE phenotype (MIC(50/90), >32/>32 mg/L). CONCLUSION: Ceftolozane/tazobactam was the most active β-lactam agent tested against P. aeruginosa and demonstrated higher in vitro activity than the available cephalosporins when tested against Enterobacterales from Asian countries.