Cargando…
DrugnomeAI is an ensemble machine-learning framework for predicting druggability of candidate drug targets
The druggability of targets is a crucial consideration in drug target selection. Here, we adopt a stochastic semi-supervised ML framework to develop DrugnomeAI, which estimates the druggability likelihood for every protein-coding gene in the human exome. DrugnomeAI integrates gene-level properties f...
Autores principales: | Raies, Arwa, Tulodziecka, Ewa, Stainer, James, Middleton, Lawrence, Dhindsa, Ryan S., Hill, Pamela, Engkvist, Ola, Harper, Andrew R., Petrovski, Slavé, Vitsios, Dimitrios |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9700683/ https://www.ncbi.nlm.nih.gov/pubmed/36434048 http://dx.doi.org/10.1038/s42003-022-04245-4 |
Ejemplares similares
-
Author Correction: DrugnomeAI is an ensemble machine-learning framework for predicting druggability of candidate drug targets
por: Raies, Arwa, et al.
Publicado: (2023) -
Prioritizing non-coding regions based on human genomic constraint and sequence context with deep learning
por: Vitsios, Dimitrios, et al.
Publicado: (2021) -
Mantis-ml: Disease-Agnostic Gene Prioritization from High-Throughput Genomic Screens by Stochastic Semi-supervised Learning
por: Vitsios, Dimitrios, et al.
Publicado: (2020) -
Gene-SCOUT: identifying genes with similar continuous trait fingerprints from phenome-wide association analyses
por: Middleton, Lawrence, et al.
Publicado: (2022) -
Cancer-driving mutations are enriched in genic regions intolerant to germline variation
por: Vitsios, Dimitrios, et al.
Publicado: (2022)