Cargando…
AlphaPeptDeep: a modular deep learning framework to predict peptide properties for proteomics
Machine learning and in particular deep learning (DL) are increasingly important in mass spectrometry (MS)-based proteomics. Recent DL models can predict the retention time, ion mobility and fragment intensities of a peptide just from the amino acid sequence with good accuracy. However, DL is a very...
Autores principales: | Zeng, Wen-Feng, Zhou, Xie-Xuan, Willems, Sander, Ammar, Constantin, Wahle, Maria, Bludau, Isabell, Voytik, Eugenia, Strauss, Maximillian T., Mann, Matthias |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9700817/ https://www.ncbi.nlm.nih.gov/pubmed/36433986 http://dx.doi.org/10.1038/s41467-022-34904-3 |
Ejemplares similares
-
AlphaMap: an open-source Python package for the visual annotation of proteomics data with sequence-specific knowledge
por: Voytik, Eugenia, et al.
Publicado: (2021) -
AlphaPeptStats: an open-source Python package for automated and scalable statistical analysis of mass spectrometry-based proteomics
por: Krismer, Elena, et al.
Publicado: (2023) -
AlphaTims: Indexing Trapped Ion Mobility Spectrometry–TOF Data for Fast and Easy Accession and Visualization
por: Willems, Sander, et al.
Publicado: (2021) -
Rapid and In-Depth Coverage of the (Phospho-)Proteome With Deep Libraries and Optimal Window Design for dia-PASEF
por: Skowronek, Patricia, et al.
Publicado: (2022) -
The structural context of posttranslational modifications at a proteome-wide scale
por: Bludau, Isabell, et al.
Publicado: (2022)