Cargando…
Large-scale coherent Ising machine based on optoelectronic parametric oscillator
Ising machines based on analog systems have the potential to accelerate the solution of ubiquitous combinatorial optimization problems. Although some artificial spins to support large-scale Ising machines have been reported, e.g., superconducting qubits in quantum annealers and short optical pulses...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9700853/ https://www.ncbi.nlm.nih.gov/pubmed/36433949 http://dx.doi.org/10.1038/s41377-022-01013-1 |
Sumario: | Ising machines based on analog systems have the potential to accelerate the solution of ubiquitous combinatorial optimization problems. Although some artificial spins to support large-scale Ising machines have been reported, e.g., superconducting qubits in quantum annealers and short optical pulses in coherent Ising machines, the spin stability is fragile due to the ultra-low equivalent temperature or optical phase sensitivity. In this paper, we propose to use short microwave pulses generated from an optoelectronic parametric oscillator as the spins to implement a large-scale Ising machine with high stability. The proposed machine supports 25,600 spins and can operate continuously and stably for hours. Moreover, the proposed Ising machine is highly compatible with high-speed electronic devices for programmability, paving a low-cost, accurate, and easy-to-implement way toward solving real-world optimization problems. |
---|