Cargando…
Genes related to allergen exposure in allergic rhinitis: a gene-chip-based study in a mouse model
BACKGROUND: The typical clinical symptoms of allergic rhinitis (AR) are known to be associated with allergen exposure; however, the underlying mechanisms are not fully understood. We wanted to gain a comprehensive view of the molecular mechanisms related to allergen exposure in a well-controlled mou...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9701046/ https://www.ncbi.nlm.nih.gov/pubmed/36434595 http://dx.doi.org/10.1186/s12920-022-01389-4 |
_version_ | 1784839455849316352 |
---|---|
author | Wang, Min Li, Ying Yang, Jun Wang, Xiangdong Zhang, Luo |
author_facet | Wang, Min Li, Ying Yang, Jun Wang, Xiangdong Zhang, Luo |
author_sort | Wang, Min |
collection | PubMed |
description | BACKGROUND: The typical clinical symptoms of allergic rhinitis (AR) are known to be associated with allergen exposure; however, the underlying mechanisms are not fully understood. We wanted to gain a comprehensive view of the molecular mechanisms related to allergen exposure in a well-controlled mouse model of AR. METHODS: An OVA-induced AR model was developed. Two hours and 4 weeks after the last OVA challenge, AR symptoms and local immune responses were assessed. At the same time, differentially expressed genes (DEG) in nasal mucosa were identified by gene expression microarray and further analyzed by bioinformatics methods. Verification of DEG was done by quantitative RT-PCR and immunohistochemistry. RESULTS: The number of nasal rubbings and sneezes, serum OVA-specific IgE concentrations, and the number of neutrophils and eosinophils in the nasal mucosa were significantly increased at 2 h and decreased at 4 weeks after the last allergen challenge compared to controls. A total of 2119 DEG were identified, and their expression dynamics were clustered into 8 profiles. Enriched functions in Profile 5, which had a similar trend to clinical features, were mainly related to inflammatory and immune response to environmental factors, eosinophils and neutrophils chemotaxis, and cell migration. Gene co-expression Network for genes from profile 5 identified BCL3, NFKB2, SOCS3, and CD53 having a higher degree. Profile 6 showed persistence of inflammatory and immune response at 4 weeks after the last allergen challenge. Olfactory and coagulation functions were enriched mainly in profiles with downward trends. CONCLUSIONS: A wide range of genes with sequential cooperative action were identified to be associated with allergen exposure in AR. BCL3 may be the most vital in symptoms manifestation. Moreover, some inflammatory responses persisted for a period after allergen exposure, supporting a new treatment strategy of targeting inflammation out of season. This study may contribute to a better understanding of AR pathogenesis and provide potential therapeutic targets for AR patients. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12920-022-01389-4. |
format | Online Article Text |
id | pubmed-9701046 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-97010462022-11-27 Genes related to allergen exposure in allergic rhinitis: a gene-chip-based study in a mouse model Wang, Min Li, Ying Yang, Jun Wang, Xiangdong Zhang, Luo BMC Med Genomics Research BACKGROUND: The typical clinical symptoms of allergic rhinitis (AR) are known to be associated with allergen exposure; however, the underlying mechanisms are not fully understood. We wanted to gain a comprehensive view of the molecular mechanisms related to allergen exposure in a well-controlled mouse model of AR. METHODS: An OVA-induced AR model was developed. Two hours and 4 weeks after the last OVA challenge, AR symptoms and local immune responses were assessed. At the same time, differentially expressed genes (DEG) in nasal mucosa were identified by gene expression microarray and further analyzed by bioinformatics methods. Verification of DEG was done by quantitative RT-PCR and immunohistochemistry. RESULTS: The number of nasal rubbings and sneezes, serum OVA-specific IgE concentrations, and the number of neutrophils and eosinophils in the nasal mucosa were significantly increased at 2 h and decreased at 4 weeks after the last allergen challenge compared to controls. A total of 2119 DEG were identified, and their expression dynamics were clustered into 8 profiles. Enriched functions in Profile 5, which had a similar trend to clinical features, were mainly related to inflammatory and immune response to environmental factors, eosinophils and neutrophils chemotaxis, and cell migration. Gene co-expression Network for genes from profile 5 identified BCL3, NFKB2, SOCS3, and CD53 having a higher degree. Profile 6 showed persistence of inflammatory and immune response at 4 weeks after the last allergen challenge. Olfactory and coagulation functions were enriched mainly in profiles with downward trends. CONCLUSIONS: A wide range of genes with sequential cooperative action were identified to be associated with allergen exposure in AR. BCL3 may be the most vital in symptoms manifestation. Moreover, some inflammatory responses persisted for a period after allergen exposure, supporting a new treatment strategy of targeting inflammation out of season. This study may contribute to a better understanding of AR pathogenesis and provide potential therapeutic targets for AR patients. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12920-022-01389-4. BioMed Central 2022-11-25 /pmc/articles/PMC9701046/ /pubmed/36434595 http://dx.doi.org/10.1186/s12920-022-01389-4 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Wang, Min Li, Ying Yang, Jun Wang, Xiangdong Zhang, Luo Genes related to allergen exposure in allergic rhinitis: a gene-chip-based study in a mouse model |
title | Genes related to allergen exposure in allergic rhinitis: a gene-chip-based study in a mouse model |
title_full | Genes related to allergen exposure in allergic rhinitis: a gene-chip-based study in a mouse model |
title_fullStr | Genes related to allergen exposure in allergic rhinitis: a gene-chip-based study in a mouse model |
title_full_unstemmed | Genes related to allergen exposure in allergic rhinitis: a gene-chip-based study in a mouse model |
title_short | Genes related to allergen exposure in allergic rhinitis: a gene-chip-based study in a mouse model |
title_sort | genes related to allergen exposure in allergic rhinitis: a gene-chip-based study in a mouse model |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9701046/ https://www.ncbi.nlm.nih.gov/pubmed/36434595 http://dx.doi.org/10.1186/s12920-022-01389-4 |
work_keys_str_mv | AT wangmin genesrelatedtoallergenexposureinallergicrhinitisagenechipbasedstudyinamousemodel AT liying genesrelatedtoallergenexposureinallergicrhinitisagenechipbasedstudyinamousemodel AT yangjun genesrelatedtoallergenexposureinallergicrhinitisagenechipbasedstudyinamousemodel AT wangxiangdong genesrelatedtoallergenexposureinallergicrhinitisagenechipbasedstudyinamousemodel AT zhangluo genesrelatedtoallergenexposureinallergicrhinitisagenechipbasedstudyinamousemodel |