Cargando…
Comparing Conventional and Deep Feature Models for Classifying Fundus Photography of Hemorrhages
Diabetic retinopathy is an eye-related pathology creating abnormalities and causing visual impairment, proper treatment of which requires identifying irregularities. This research uses a hemorrhage detection method and compares the classification of conventional and deep features. Especially, the me...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9701128/ https://www.ncbi.nlm.nih.gov/pubmed/36444209 http://dx.doi.org/10.1155/2022/7387174 |
_version_ | 1784839474142773248 |
---|---|
author | Aziz, Tamoor Charoenlarpnopparut, Chalie Mahapakulchai, Srijidtra |
author_facet | Aziz, Tamoor Charoenlarpnopparut, Chalie Mahapakulchai, Srijidtra |
author_sort | Aziz, Tamoor |
collection | PubMed |
description | Diabetic retinopathy is an eye-related pathology creating abnormalities and causing visual impairment, proper treatment of which requires identifying irregularities. This research uses a hemorrhage detection method and compares the classification of conventional and deep features. Especially, the method identifies hemorrhage connected with blood vessels or residing at the retinal border and was reported challenging. Initially, adaptive brightness adjustment and contrast enhancement rectify degraded images. Prospective locations of hemorrhages are estimated by a Gaussian matched filter, entropy thresholding, and morphological operation. Hemorrhages are segmented by a novel technique based on the regional variance of intensities. Features are then extracted by conventional methods and deep models for training support vector machines and the results are evaluated. Evaluation metrics for each model are promising, but findings suggest that comparatively, deep models are more effective than conventional features. |
format | Online Article Text |
id | pubmed-9701128 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-97011282022-11-27 Comparing Conventional and Deep Feature Models for Classifying Fundus Photography of Hemorrhages Aziz, Tamoor Charoenlarpnopparut, Chalie Mahapakulchai, Srijidtra J Healthc Eng Research Article Diabetic retinopathy is an eye-related pathology creating abnormalities and causing visual impairment, proper treatment of which requires identifying irregularities. This research uses a hemorrhage detection method and compares the classification of conventional and deep features. Especially, the method identifies hemorrhage connected with blood vessels or residing at the retinal border and was reported challenging. Initially, adaptive brightness adjustment and contrast enhancement rectify degraded images. Prospective locations of hemorrhages are estimated by a Gaussian matched filter, entropy thresholding, and morphological operation. Hemorrhages are segmented by a novel technique based on the regional variance of intensities. Features are then extracted by conventional methods and deep models for training support vector machines and the results are evaluated. Evaluation metrics for each model are promising, but findings suggest that comparatively, deep models are more effective than conventional features. Hindawi 2022-11-19 /pmc/articles/PMC9701128/ /pubmed/36444209 http://dx.doi.org/10.1155/2022/7387174 Text en Copyright © 2022 Tamoor Aziz et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Aziz, Tamoor Charoenlarpnopparut, Chalie Mahapakulchai, Srijidtra Comparing Conventional and Deep Feature Models for Classifying Fundus Photography of Hemorrhages |
title | Comparing Conventional and Deep Feature Models for Classifying Fundus Photography of Hemorrhages |
title_full | Comparing Conventional and Deep Feature Models for Classifying Fundus Photography of Hemorrhages |
title_fullStr | Comparing Conventional and Deep Feature Models for Classifying Fundus Photography of Hemorrhages |
title_full_unstemmed | Comparing Conventional and Deep Feature Models for Classifying Fundus Photography of Hemorrhages |
title_short | Comparing Conventional and Deep Feature Models for Classifying Fundus Photography of Hemorrhages |
title_sort | comparing conventional and deep feature models for classifying fundus photography of hemorrhages |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9701128/ https://www.ncbi.nlm.nih.gov/pubmed/36444209 http://dx.doi.org/10.1155/2022/7387174 |
work_keys_str_mv | AT aziztamoor comparingconventionalanddeepfeaturemodelsforclassifyingfundusphotographyofhemorrhages AT charoenlarpnopparutchalie comparingconventionalanddeepfeaturemodelsforclassifyingfundusphotographyofhemorrhages AT mahapakulchaisrijidtra comparingconventionalanddeepfeaturemodelsforclassifyingfundusphotographyofhemorrhages |