Cargando…
Comparing Conventional and Deep Feature Models for Classifying Fundus Photography of Hemorrhages
Diabetic retinopathy is an eye-related pathology creating abnormalities and causing visual impairment, proper treatment of which requires identifying irregularities. This research uses a hemorrhage detection method and compares the classification of conventional and deep features. Especially, the me...
Autores principales: | Aziz, Tamoor, Charoenlarpnopparut, Chalie, Mahapakulchai, Srijidtra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9701128/ https://www.ncbi.nlm.nih.gov/pubmed/36444209 http://dx.doi.org/10.1155/2022/7387174 |
Ejemplares similares
-
Deep learning-based hemorrhage detection for diabetic retinopathy screening
por: Aziz, Tamoor, et al.
Publicado: (2023) -
Fundus imaging: Conventional fundus drawings versus ultrawidefield fundus photography
por: Shah, Rakesh D, et al.
Publicado: (2023) -
Ultra-wide-field fundus photography compared to ophthalmoscopy in diagnosing and classifying major retinal diseases
por: Midena, E., et al.
Publicado: (2022) -
A deep learning model for generating fundus autofluorescence images from color fundus photography
por: Song, Fan, et al.
Publicado: (2023) -
Smartphone Fundus Photography
por: Nazari Khanamiri, Hossein, et al.
Publicado: (2017)