Cargando…
Fission yeast Dis1 is an unconventional TOG/XMAP215 that induces microtubule catastrophe to drive chromosome pulling
The shortening of microtubules attached to kinetochores is the driving force of chromosome movement during cell division. Specific kinesins are believed to shorten microtubules but are dispensable for viability in yeast, implying the existence of additional factors responsible for microtubule shorte...
Autores principales: | Murase, Yuichi, Yamagishi, Masahiko, Okada, Naoyuki, Toya, Mika, Yajima, Junichiro, Hamada, Takahiro, Sato, Masamitsu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9701203/ https://www.ncbi.nlm.nih.gov/pubmed/36435910 http://dx.doi.org/10.1038/s42003-022-04271-2 |
Ejemplares similares
-
Two XMAP215/TOG Microtubule Polymerases, Alp14 and Dis1, Play Non-Exchangeable, Distinct Roles in Microtubule Organisation in Fission Yeast
por: Yukawa, Masashi, et al.
Publicado: (2019) -
The Fission Yeast XMAP215 Homolog Dis1p Is Involved in Microtubule Bundle Organization
por: Roque, Hélio, et al.
Publicado: (2010) -
The TOG protein Stu2/XMAP215 interacts covalently and noncovalently with SUMO
por: Greenlee, Matt, et al.
Publicado: (2018) -
The XMAP215 family drives microtubule polymerization using a structurally diverse TOG array
por: Fox, Jaime C., et al.
Publicado: (2014) -
XMAP215 promotes microtubule catastrophe by disrupting the growing microtubule end
por: Farmer, Veronica, et al.
Publicado: (2021)