Cargando…
Numerical solution of COVID-19 pandemic model via finite difference and meshless techniques
In the present paper, a reaction–diffusion epidemic mathematical model is proposed for analysis of the transmission mechanism of the novel coronavirus disease 2019 (COVID-19). The mathematical model contains six-time and space-dependent classes, namely; Susceptible, Exposed, Asymptomatically infecte...
Autores principales: | Zarin, Rahat, Siraj-ul-Islam, Haider, Nadeem, Naeem-ul-Islam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9701647/ https://www.ncbi.nlm.nih.gov/pubmed/36467539 http://dx.doi.org/10.1016/j.enganabound.2022.11.026 |
Ejemplares similares
-
Numerical study of a nonlinear COVID-19 pandemic model by finite difference and meshless methods
por: Zarin, Rahat
Publicado: (2022) -
A numerical study of spatio-temporal COVID-19 vaccine model via finite-difference operator-splitting and meshless techniques
por: Khan, Arshad A., et al.
Publicado: (2023) -
The numerical solution of a mathematical model of the Covid-19 pandemic utilizing a meshless local discrete Galerkin method
por: Asadi-Mehregan, Fatemeh, et al.
Publicado: (2022) -
Elastoplastic Analysis
of Metallic Parts Employing
a Meshless Method
por: Chhillar, Ajay, et al.
Publicado: (2023) -
Meshless Methods in Solid Mechanics
por: Chen, Youping, et al.
Publicado: (2006)