Cargando…
Machine learning did not beat logistic regression in time series prediction for severe asthma exacerbations
Early detection of severe asthma exacerbations through home monitoring data in patients with stable mild-to-moderate chronic asthma could help to timely adjust medication. We evaluated the potential of machine learning methods compared to a clinical rule and logistic regression to predict severe exa...
Autores principales: | de Hond, Anne A. H., Kant, Ilse M. J., Honkoop, Persijn J., Smith, Andrew D., Steyerberg, Ewout W., Sont, Jacob K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9701686/ https://www.ncbi.nlm.nih.gov/pubmed/36437306 http://dx.doi.org/10.1038/s41598-022-24909-9 |
Ejemplares similares
-
Validation of online Asthma Control Questionnaire and Asthma Quality of Life Questionnaire
por: Khusial, Rishi J., et al.
Publicado: (2020) -
MyAirCoach: the use of home-monitoring and mHealth systems to predict deterioration in asthma control and the occurrence of asthma exacerbations; study protocol of an observational study
por: Honkoop, Persijn J, et al.
Publicado: (2017) -
Asthma phenotypes in primary care
por: Honkoop, Persijn J., et al.
Publicado: (2020) -
Graphical assessment of internal and external calibration of logistic regression models by using loess smoothers
por: Austin, Peter C., et al.
Publicado: (2013) -
The Integrated Calibration Index (ICI) and related metrics for quantifying the calibration of logistic regression models
por: Austin, Peter C., et al.
Publicado: (2019)