Cargando…
A deep learning model based on whole slide images to predict disease-free survival in cutaneous melanoma patients
The application of deep learning on whole-slide histological images (WSIs) can reveal insights for clinical and basic tumor science investigations. Finding quantitative imaging biomarkers from WSIs directly for the prediction of disease-free survival (DFS) in stage I–III melanoma patients is crucial...
Autores principales: | Comes, Maria Colomba, Fucci, Livia, Mele, Fabio, Bove, Samantha, Cristofaro, Cristian, De Risi, Ivana, Fanizzi, Annarita, Milella, Martina, Strippoli, Sabino, Zito, Alfredo, Guida, Michele, Massafra, Raffaella |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9701687/ https://www.ncbi.nlm.nih.gov/pubmed/36437296 http://dx.doi.org/10.1038/s41598-022-24315-1 |
Ejemplares similares
-
A CT-based transfer learning approach to predict NSCLC recurrence: The added-value of peritumoral region
por: Bove, Samantha, et al.
Publicado: (2023) -
Systemic Treatments for Metastatic Human Epidermal Growth Factor Receptor 2-Positive Breast Cancer: Old Certainties and New Frontiers
por: Rizzo, Alessandro, et al.
Publicado: (2022) -
Cemiplimab in an Elderly Frail Population of Patients With Locally Advanced or Metastatic Cutaneous Squamous Cell Carcinoma: A Single-Center Real-Life Experience From Italy
por: Strippoli, Sabino, et al.
Publicado: (2021) -
A ultrasound-based radiomic approach to predict the nodal status in clinically negative breast cancer patients
por: Bove, Samantha, et al.
Publicado: (2022) -
Assessing the cost-effectiveness of waiting list reduction strategies for a breast radiology department: a real-life case study
por: Fanizzi, Annarita, et al.
Publicado: (2023)