Cargando…
Geometrical congruence, greedy navigability and myopic transfer in complex networks and brain connectomes
We introduce in network geometry a measure of geometrical congruence (GC) to evaluate the extent a network topology follows an underlying geometry. This requires finding all topological shortest-paths for each nonadjacent node pair in the network: a nontrivial computational task. Hence, we propose a...
Autores principales: | Cannistraci, Carlo Vittorio, Muscoloni, Alessandro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9701786/ https://www.ncbi.nlm.nih.gov/pubmed/36437254 http://dx.doi.org/10.1038/s41467-022-34634-6 |
Ejemplares similares
-
“Stealing fire or stacking knowledge” by machine intelligence to model link prediction in complex networks
por: Muscoloni, Alessandro, et al.
Publicado: (2022) -
From link-prediction in brain connectomes and protein interactomes to the local-community-paradigm in complex networks
por: Cannistraci, Carlo Vittorio, et al.
Publicado: (2013) -
Collective navigation of complex networks: Participatory greedy routing
por: Kleineberg, Kaj-Kolja, et al.
Publicado: (2017) -
Machine learning meets complex networks via coalescent embedding in the hyperbolic space
por: Muscoloni, Alessandro, et al.
Publicado: (2017) -
Erratum: From link-prediction in brain connectomes and protein interactomes to the local-community-paradigm in complex networks
por: Cannistraci, Carlo Vittorio, et al.
Publicado: (2015)