Cargando…
Observing flow of He II with unsupervised machine learning
Time dependent observations of point-to-point correlations of the velocity vector field (structure functions) are necessary to model and understand fluid flow around complex objects. Using thermal gradients, we observed fluid flow by recording fluorescence of [Formula: see text] excimers produced by...
Autores principales: | Wen, X., McDonald, L., Pierce, J., Guo, W., Fitzsimmons, M. R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9701805/ https://www.ncbi.nlm.nih.gov/pubmed/36437248 http://dx.doi.org/10.1038/s41598-022-21906-w |
Ejemplares similares
-
Regularization for Unsupervised Learning of Optical Flow
por: Long, Libo, et al.
Publicado: (2023) -
Unsupervised Machine Learning to Identify Depressive Subtypes
por: Kung, Benson, et al.
Publicado: (2022) -
Unsupervised Machine Learning Applied to Seismic Interpretation: Towards an Unsupervised Automated Interpretation Tool
por: Celecia, Alimed, et al.
Publicado: (2021) -
Optical investigations of He II two phase flow
por: Di Muoio, E, et al.
Publicado: (2002) -
Optical Investigations of HeII Two Phase Flow
por: Di Muoio, E, et al.
Publicado: (2001)