Cargando…
Graph neural networks for materials science and chemistry
Machine learning plays an increasingly important role in many areas of chemistry and materials science, being used to predict materials properties, accelerate simulations, design new structures, and predict synthesis routes of new materials. Graph neural networks (GNNs) are one of the fastest growin...
Autores principales: | Reiser, Patrick, Neubert, Marlen, Eberhard, André, Torresi, Luca, Zhou, Chen, Shao, Chen, Metni, Houssam, van Hoesel, Clint, Schopmans, Henrik, Sommer, Timo, Friederich, Pascal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9702700/ https://www.ncbi.nlm.nih.gov/pubmed/36468086 http://dx.doi.org/10.1038/s43246-022-00315-6 |
Ejemplares similares
-
Symposium of materials science and chemistry II
por: Wahyuningsih, Tutik Dwi, et al.
Publicado: (2020) -
Graph Partitions in Chemistry
por: Michos, Ioannis, et al.
Publicado: (2023) -
Chemistry and materials science applications on grid infrastructures
por: Cozzini, Stefano, et al.
Publicado: (2009) -
Introduction to Quantum Mechanics: in Chemistry, Materials Science, and Biology
por: Blinder, Sy L
Publicado: (2004) -
Neutron scattering: applications in biology, chemistry, and materials science
por: Fernandez-Alonso, Felix, et al.
Publicado: (2017)