Cargando…
Dynamical Analysis of COVID-19 Model Incorporating Environmental Factors
The continuing coronavirus pandemic has come up with considerable questions in front of the world. Presently, India is among concerned countries in Asia. Even though the recovery rate is more than the death rate, it is affecting human lives and experiencing losses to the market. Several methods were...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9702965/ https://www.ncbi.nlm.nih.gov/pubmed/36466051 http://dx.doi.org/10.1007/s40995-022-01372-9 |
Sumario: | The continuing coronavirus pandemic has come up with considerable questions in front of the world. Presently, India is among concerned countries in Asia. Even though the recovery rate is more than the death rate, it is affecting human lives and experiencing losses to the market. Several methods were employed to study the spread of novel coronavirus. Mathematical modeling is one of the prominent techniques to evaluate the dynamics of novel coronavirus. In this work, we extend the mathematical model SEIAQRDT by incorporating environmental transmission to analyze the transmission of coronavirus in India. The notable aspect of the model incorporates asymptomatic population, quarantine individuals, and environmental transmission factors. These factors have enormous significance in the ongoing COVID-19 outbreak. The basic reproduction number [Formula: see text] is calculated theoretically. Bifurcation analysis of [Formula: see text] is also done analytically. The existence and stability analysis of disease-free equilibrium (DFE) and endemic equilibrium (EE) points are established. The impact of environmental factors in spreading COVID-19 pandemic is deliberated. The case study for India and Italy is presented and compared with real data, and the results are in accordance with the real situation. |
---|