Cargando…
Accurate preoperative staging and HER2 status prediction of gastric cancer by the deep learning system based on enhanced computed tomography
PURPOSE: To construct the deep learning system (DLS) based on enhanced computed tomography (CT) images for preoperative prediction of staging and human epidermal growth factor receptor 2 (HER2) status in gastric cancer patients. METHODS: The raw enhanced CT image dataset consisted of CT images of 38...
Autores principales: | Guan, Xiao, Lu, Na, Zhang, Jianping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9702985/ https://www.ncbi.nlm.nih.gov/pubmed/36452488 http://dx.doi.org/10.3389/fonc.2022.950185 |
Ejemplares similares
-
Deep learning model for diagnosing early gastric cancer using preoperative computed tomography images
por: Zeng, Qingwen, et al.
Publicado: (2022) -
Computed Tomography-Based Deep Learning Nomogram Can Accurately Predict Lymph Node Metastasis in Gastric Cancer
por: Guan, Xiao, et al.
Publicado: (2022) -
Development of a deep learning model for early gastric cancer diagnosis using preoperative computed tomography images
por: Gao, Zhihong, et al.
Publicado: (2023) -
Evaluation of Epidermal Growth Factor Receptor 2 Status in Gastric Cancer by CT-Based Deep Learning Radiomics Nomogram
por: Guan, Xiao, et al.
Publicado: (2022) -
F18-fluorodeoxyglucose-positron emission tomography and computed tomography is not accurate in preoperative staging of gastric cancer
por: Ha, Tae Kyung, et al.
Publicado: (2011)