Cargando…

A methodology for determining the local mechanical properties of model atomistic glassy polymeric nanostructured materials

We propose a methodology for calculating the distribution of the mechanical properties in model atomistic polymer-based nanostructured systems. The use of atomistic simulations is key in unravelling the fundamental mechanical behavior of composite materials. Most simulations involving the mechanical...

Descripción completa

Detalles Bibliográficos
Autores principales: Reda, Hilal, Chazirakis, Anthony, Behbahani, Alireza F., Savva, Nikos, Harmandaris, Vagelis
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9703630/
https://www.ncbi.nlm.nih.gov/pubmed/36451781
http://dx.doi.org/10.1016/j.mex.2022.101931
_version_ 1784839895344218112
author Reda, Hilal
Chazirakis, Anthony
Behbahani, Alireza F.
Savva, Nikos
Harmandaris, Vagelis
author_facet Reda, Hilal
Chazirakis, Anthony
Behbahani, Alireza F.
Savva, Nikos
Harmandaris, Vagelis
author_sort Reda, Hilal
collection PubMed
description We propose a methodology for calculating the distribution of the mechanical properties in model atomistic polymer-based nanostructured systems. The use of atomistic simulations is key in unravelling the fundamental mechanical behavior of composite materials. Most simulations involving the mechanical properties of polymer nanocomposites (PNCs) concern their global (average) properties, which are typically extracted by applying macroscopic strain on the boundaries of the simulation box and calculating the total (global) stress by invoking the Virial formalism over all atoms within the simulation box; thus, extracting the pertinent mechanical properties from the corresponding stress-strain relation. However, in order to probe the distribution • Calculating the stress and strain per atom (or per particle) for nanostructured microscopic (here atomistic) model configurations, under an imposed applied deformation. • Averaging the local, per-atom defined, stress and strain on user-defined subdomains within the nanostructured model system. • Predicting the mechanical properties within the specific subdomains, focusing on polymer/solid interphases.
format Online
Article
Text
id pubmed-9703630
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-97036302022-11-29 A methodology for determining the local mechanical properties of model atomistic glassy polymeric nanostructured materials Reda, Hilal Chazirakis, Anthony Behbahani, Alireza F. Savva, Nikos Harmandaris, Vagelis MethodsX Method Article We propose a methodology for calculating the distribution of the mechanical properties in model atomistic polymer-based nanostructured systems. The use of atomistic simulations is key in unravelling the fundamental mechanical behavior of composite materials. Most simulations involving the mechanical properties of polymer nanocomposites (PNCs) concern their global (average) properties, which are typically extracted by applying macroscopic strain on the boundaries of the simulation box and calculating the total (global) stress by invoking the Virial formalism over all atoms within the simulation box; thus, extracting the pertinent mechanical properties from the corresponding stress-strain relation. However, in order to probe the distribution • Calculating the stress and strain per atom (or per particle) for nanostructured microscopic (here atomistic) model configurations, under an imposed applied deformation. • Averaging the local, per-atom defined, stress and strain on user-defined subdomains within the nanostructured model system. • Predicting the mechanical properties within the specific subdomains, focusing on polymer/solid interphases. Elsevier 2022-11-22 /pmc/articles/PMC9703630/ /pubmed/36451781 http://dx.doi.org/10.1016/j.mex.2022.101931 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Method Article
Reda, Hilal
Chazirakis, Anthony
Behbahani, Alireza F.
Savva, Nikos
Harmandaris, Vagelis
A methodology for determining the local mechanical properties of model atomistic glassy polymeric nanostructured materials
title A methodology for determining the local mechanical properties of model atomistic glassy polymeric nanostructured materials
title_full A methodology for determining the local mechanical properties of model atomistic glassy polymeric nanostructured materials
title_fullStr A methodology for determining the local mechanical properties of model atomistic glassy polymeric nanostructured materials
title_full_unstemmed A methodology for determining the local mechanical properties of model atomistic glassy polymeric nanostructured materials
title_short A methodology for determining the local mechanical properties of model atomistic glassy polymeric nanostructured materials
title_sort methodology for determining the local mechanical properties of model atomistic glassy polymeric nanostructured materials
topic Method Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9703630/
https://www.ncbi.nlm.nih.gov/pubmed/36451781
http://dx.doi.org/10.1016/j.mex.2022.101931
work_keys_str_mv AT redahilal amethodologyfordeterminingthelocalmechanicalpropertiesofmodelatomisticglassypolymericnanostructuredmaterials
AT chazirakisanthony amethodologyfordeterminingthelocalmechanicalpropertiesofmodelatomisticglassypolymericnanostructuredmaterials
AT behbahanialirezaf amethodologyfordeterminingthelocalmechanicalpropertiesofmodelatomisticglassypolymericnanostructuredmaterials
AT savvanikos amethodologyfordeterminingthelocalmechanicalpropertiesofmodelatomisticglassypolymericnanostructuredmaterials
AT harmandarisvagelis amethodologyfordeterminingthelocalmechanicalpropertiesofmodelatomisticglassypolymericnanostructuredmaterials
AT redahilal methodologyfordeterminingthelocalmechanicalpropertiesofmodelatomisticglassypolymericnanostructuredmaterials
AT chazirakisanthony methodologyfordeterminingthelocalmechanicalpropertiesofmodelatomisticglassypolymericnanostructuredmaterials
AT behbahanialirezaf methodologyfordeterminingthelocalmechanicalpropertiesofmodelatomisticglassypolymericnanostructuredmaterials
AT savvanikos methodologyfordeterminingthelocalmechanicalpropertiesofmodelatomisticglassypolymericnanostructuredmaterials
AT harmandarisvagelis methodologyfordeterminingthelocalmechanicalpropertiesofmodelatomisticglassypolymericnanostructuredmaterials