Cargando…
Deep learning and multi-omics approach to predict drug responses in cancer
BACKGROUND: Cancers are genetically heterogeneous, so anticancer drugs show varying degrees of effectiveness on patients due to their differing genetic profiles. Knowing patient’s responses to numerous cancer drugs are needed for personalized treatment for cancer. By using molecular profiles of canc...
Autores principales: | Wang, Conghao, Lye, Xintong, Kaalia, Rama, Kumar, Parvin, Rajapakse, Jagath C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9703655/ https://www.ncbi.nlm.nih.gov/pubmed/36443676 http://dx.doi.org/10.1186/s12859-022-04964-9 |
Ejemplares similares
-
Network-based integration of multi-omics data for clinical outcome prediction in neuroblastoma
por: Wang, Conghao, et al.
Publicado: (2022) -
Functional homogeneity and specificity of topological modules in human proteome
por: Kaalia, Rama, et al.
Publicado: (2019) -
Refining modules to determine functionally significant clusters in molecular networks
por: Kaalia, Rama, et al.
Publicado: (2019) -
GO2Vec: transforming GO terms and proteins to vector representations via graph embeddings
por: Zhong, Xiaoshi, et al.
Publicado: (2020) -
Combining Neuroimaging and Omics Datasets for Disease Classification Using Graph Neural Networks
por: Chan, Yi Hao, et al.
Publicado: (2022)