Cargando…
Cardiovascular magnetic resonance images with susceptibility artifacts: artificial intelligence with spatial-attention for ventricular volumes and mass assessment
BACKGROUND: Segmentation of cardiovascular magnetic resonance (CMR) images is an essential step for evaluating dimensional and functional ventricular parameters as ejection fraction (EF) but may be limited by artifacts, which represent the major challenge to automatically derive clinical information...
Autores principales: | Penso, Marco, Babbaro, Mario, Moccia, Sara, Guglielmo, Marco, Carerj, Maria Ludovica, Giacari, Carlo Maria, Chiesa, Mattia, Maragna, Riccardo, Rabbat, Mark G., Barison, Andrea, Martini, Nicola, Pepi, Mauro, Caiani, Enrico G., Pontone, Gianluca |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9703740/ https://www.ncbi.nlm.nih.gov/pubmed/36437452 http://dx.doi.org/10.1186/s12968-022-00899-5 |
Ejemplares similares
-
A deep-learning approach for myocardial fibrosis detection in early contrast-enhanced cardiac CT images
por: Penso, Marco, et al.
Publicado: (2023) -
Artificial Intelligence Based Multimodality Imaging: A New Frontier in Coronary Artery Disease Management
por: Maragna, Riccardo, et al.
Publicado: (2021) -
Changing Paradigms in the Diagnosis of Ischemic Heart Disease by Multimodality Imaging
por: Baggiano, Andrea, et al.
Publicado: (2022) -
Decision Support Systems in HF based on Deep Learning Technologies
por: Penso, Marco, et al.
Publicado: (2022) -
The Role of Cardiac Magnetic Resonance in Aortic Stenosis and Regurgitation
por: Guglielmo, Marco, et al.
Publicado: (2022)