Cargando…
Brain2Pix: Fully convolutional naturalistic video frame reconstruction from brain activity
Reconstructing complex and dynamic visual perception from brain activity remains a major challenge in machine learning applications to neuroscience. Here, we present a new method for reconstructing naturalistic images and videos from very large single-participant functional magnetic resonance imagin...
Autores principales: | Le, Lynn, Ambrogioni, Luca, Seeliger, Katja, Güçlütürk, Yağmur, van Gerven, Marcel, Güçlü, Umut |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9703977/ https://www.ncbi.nlm.nih.gov/pubmed/36452333 http://dx.doi.org/10.3389/fnins.2022.940972 |
Ejemplares similares
-
Representations of naturalistic stimulus complexity in early and associative visual and auditory cortices
por: Güçlütürk, Yağmur, et al.
Publicado: (2018) -
Hyperrealistic neural decoding for reconstructing faces from fMRI activations via the GAN latent space
por: Dado, Thirza, et al.
Publicado: (2022) -
End-to-end neural system identification with neural information flow
por: Seeliger, K., et al.
Publicado: (2021) -
Explainable and interpretable models in computer vision and machine learning
por: Escalante, Hugo Jair, et al.
Publicado: (2019) -
Gaussian mixture models and semantic gating improve reconstructions from human brain activity
por: Schoenmakers, Sanne, et al.
Publicado: (2015)