Cargando…

LED-light-activated photocatalytic performance of metal-free carbon-modified hexagonal boron nitride towards degradation of methylene blue and phenol

The present study outlines the transformation of non-photoresponsive hexagonal boron nitride (HBN) into a visible-light-responsive material. The carbon modification was achieved through a solid-state reaction procedure inside a tube furnace under nitrogen atmosphere. In comparison to HBN (bandgap of...

Descripción completa

Detalles Bibliográficos
Autores principales: Mishra, Nirmalendu S, Saravanan, Pichiah
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Beilstein-Institut 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9704021/
https://www.ncbi.nlm.nih.gov/pubmed/36483635
http://dx.doi.org/10.3762/bjnano.13.114
Descripción
Sumario:The present study outlines the transformation of non-photoresponsive hexagonal boron nitride (HBN) into a visible-light-responsive material. The carbon modification was achieved through a solid-state reaction procedure inside a tube furnace under nitrogen atmosphere. In comparison to HBN (bandgap of 5.2 eV), the carbon-modified boron nitride could efficiently absorb LED light irradiation with a light harvesting efficiency of ≈90% and a direct bandgap of 2 eV. The introduction of carbon into the HBN lattice led to a significant change in the electronic environment through the formation of C–B and C–N bonds which resulted in improved visible light activity, lower charge transfer resistance, and improved charge carrier density (2.97 × 10(19) cm(−3)). This subsequently enhanced the photocurrent density (three times) and decreased the photovoltage decay time (two times) in comparison to those of HBN. The electronic band structure (obtained through Mott–Schottky plots) and charge trapping analysis confirmed the dominance of e(−), O(2)(−•), and (•)OH as dominant reactive oxygen species. The carbon modification could effectively remove 93.83% of methylene blue (MB, 20 ppm solution) and 48.56% of phenol (10 ppm solution) from the aqueous phase in comparison to HBN which shows zero activity in the visible region.