Cargando…

Modelling the impact of timelines of testing and isolation on disease control

Testing and isolation remain a key component of public health responses to both persistent and emerging infectious diseases. Although the value of these measures have been demonstrated in combating recent outbreaks including the COVID-19 pandemic and monkeypox, their impact depends critically on the...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Ao, Wang, Zhen, Moghadas, Seyed M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: KeAi Publishing 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9704027/
https://www.ncbi.nlm.nih.gov/pubmed/36467718
http://dx.doi.org/10.1016/j.idm.2022.11.008
Descripción
Sumario:Testing and isolation remain a key component of public health responses to both persistent and emerging infectious diseases. Although the value of these measures have been demonstrated in combating recent outbreaks including the COVID-19 pandemic and monkeypox, their impact depends critically on the timelines of testing and start of isolation during the course of disease. To investigate this impact, we developed a delay differential model and incorporated age-since-symptom-onset as a parameter for delay in testing. We then used the model to compare the outcomes of reverse-transcription polymerase chain reaction (RT-PCR) and rapid antigen (RA) testing methods when isolation starts either at the time of testing or at the time of test result. Parameterizing the model with estimates of SARS-CoV-2 infection and diagnostic sensitivity of the tests, we found that the reduction of disease transmission using the RA test can be comparable to that achieved by applying the RT-PCR test. Given constraints and inevitable delays associated with sample collection and laboratory assays in RT-PCR testing post symptom onset, self-administered RA tests with short turnaround times present a viable alternative for timely isolation of infectious cases.