Cargando…
Deciphering the anti-filarial potential of bioactive compounds from Ocimum sanctum: a combined experimental and computational study
CONTEXT: The anthelminthic effect of Ocimum species (Lamiaceae) has been reported, however, its anti-filarial effect has not been explored to date. OBJECTIVE: This study evaluates the effect of Ocimum sanctum L. (OS) against lymphatic filarial parasites. MATERIAL AND METHODS: The ethanol extract of...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9704100/ https://www.ncbi.nlm.nih.gov/pubmed/36415158 http://dx.doi.org/10.1080/13880209.2022.2132030 |
_version_ | 1784839989600714752 |
---|---|
author | Mishra, Ayushi Kumar, Vipin Singh, Anchal |
author_facet | Mishra, Ayushi Kumar, Vipin Singh, Anchal |
author_sort | Mishra, Ayushi |
collection | PubMed |
description | CONTEXT: The anthelminthic effect of Ocimum species (Lamiaceae) has been reported, however, its anti-filarial effect has not been explored to date. OBJECTIVE: This study evaluates the effect of Ocimum sanctum L. (OS) against lymphatic filarial parasites. MATERIAL AND METHODS: The ethanol extract of OS (EOS) leaves was tested for anti-filarial activity against Setaria cervi. Equal size and number (n = 10) of adult female S. cervi worms were incubated in 125, 250 or 375 μg/mL EOS extract for 6 h at 37 °C. The OS bioactive components were identified by UPLC-ESI-MS/MS and subjected to docking and molecular dynamics (MD) simulation against filarial antioxidant proteins. RESULTS: The EOS significantly inhibited the motility of adult female S. cervi after 6 h of incubation. The motility was found to be reduced by 53.7% in 375 µg/mL and 43.8% in 250 µg/mL EOS after 6 h of treatment. The UPLC-ESI-MS/MS analysis of ethanol extract of O. sanctum revealed the presence of 13 bioactive compounds. The docking analysis showed eight OS bioactive compounds to have high binding affinity (> 4.8 kcal/mol) towards antioxidant proteins of filarial parasites. Additionally, MD simulation studies showed significant impact of (RMSD ≤ 10 Å) chlorogenic acid, luteolin and ursolic acid on filarial antioxidant enzymes/proteins. To our knowledge, this is the first report of the anti-filarial activity of Ocimum sanctum. DISCUSSION AND CONCLUSIONS: The effect of EOS and OS bioactive components on human filarial parasites can be further evaluated for the development of new anti-filarial formulations. |
format | Online Article Text |
id | pubmed-9704100 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Taylor & Francis |
record_format | MEDLINE/PubMed |
spelling | pubmed-97041002022-11-29 Deciphering the anti-filarial potential of bioactive compounds from Ocimum sanctum: a combined experimental and computational study Mishra, Ayushi Kumar, Vipin Singh, Anchal Pharm Biol Research Article CONTEXT: The anthelminthic effect of Ocimum species (Lamiaceae) has been reported, however, its anti-filarial effect has not been explored to date. OBJECTIVE: This study evaluates the effect of Ocimum sanctum L. (OS) against lymphatic filarial parasites. MATERIAL AND METHODS: The ethanol extract of OS (EOS) leaves was tested for anti-filarial activity against Setaria cervi. Equal size and number (n = 10) of adult female S. cervi worms were incubated in 125, 250 or 375 μg/mL EOS extract for 6 h at 37 °C. The OS bioactive components were identified by UPLC-ESI-MS/MS and subjected to docking and molecular dynamics (MD) simulation against filarial antioxidant proteins. RESULTS: The EOS significantly inhibited the motility of adult female S. cervi after 6 h of incubation. The motility was found to be reduced by 53.7% in 375 µg/mL and 43.8% in 250 µg/mL EOS after 6 h of treatment. The UPLC-ESI-MS/MS analysis of ethanol extract of O. sanctum revealed the presence of 13 bioactive compounds. The docking analysis showed eight OS bioactive compounds to have high binding affinity (> 4.8 kcal/mol) towards antioxidant proteins of filarial parasites. Additionally, MD simulation studies showed significant impact of (RMSD ≤ 10 Å) chlorogenic acid, luteolin and ursolic acid on filarial antioxidant enzymes/proteins. To our knowledge, this is the first report of the anti-filarial activity of Ocimum sanctum. DISCUSSION AND CONCLUSIONS: The effect of EOS and OS bioactive components on human filarial parasites can be further evaluated for the development of new anti-filarial formulations. Taylor & Francis 2022-11-22 /pmc/articles/PMC9704100/ /pubmed/36415158 http://dx.doi.org/10.1080/13880209.2022.2132030 Text en © 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Mishra, Ayushi Kumar, Vipin Singh, Anchal Deciphering the anti-filarial potential of bioactive compounds from Ocimum sanctum: a combined experimental and computational study |
title | Deciphering the anti-filarial potential of bioactive compounds from Ocimum sanctum: a combined experimental and computational study |
title_full | Deciphering the anti-filarial potential of bioactive compounds from Ocimum sanctum: a combined experimental and computational study |
title_fullStr | Deciphering the anti-filarial potential of bioactive compounds from Ocimum sanctum: a combined experimental and computational study |
title_full_unstemmed | Deciphering the anti-filarial potential of bioactive compounds from Ocimum sanctum: a combined experimental and computational study |
title_short | Deciphering the anti-filarial potential of bioactive compounds from Ocimum sanctum: a combined experimental and computational study |
title_sort | deciphering the anti-filarial potential of bioactive compounds from ocimum sanctum: a combined experimental and computational study |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9704100/ https://www.ncbi.nlm.nih.gov/pubmed/36415158 http://dx.doi.org/10.1080/13880209.2022.2132030 |
work_keys_str_mv | AT mishraayushi decipheringtheantifilarialpotentialofbioactivecompoundsfromocimumsanctumacombinedexperimentalandcomputationalstudy AT kumarvipin decipheringtheantifilarialpotentialofbioactivecompoundsfromocimumsanctumacombinedexperimentalandcomputationalstudy AT singhanchal decipheringtheantifilarialpotentialofbioactivecompoundsfromocimumsanctumacombinedexperimentalandcomputationalstudy |