Cargando…
Application of therapeutic drug monitoring to the treatment of bacterial central nervous system infection: a scoping review
BACKGROUND: Bacterial central nervous system (CNS) infection is challenging to treat and carries high risk of recurrence, morbidity, and mortality. Low CNS penetration of antibiotics may contribute to poor clinical outcomes from bacterial CNS infections. The current application of therapeutic drug m...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9704426/ https://www.ncbi.nlm.nih.gov/pubmed/36227686 http://dx.doi.org/10.1093/jac/dkac332 |
Sumario: | BACKGROUND: Bacterial central nervous system (CNS) infection is challenging to treat and carries high risk of recurrence, morbidity, and mortality. Low CNS penetration of antibiotics may contribute to poor clinical outcomes from bacterial CNS infections. The current application of therapeutic drug monitoring (TDM) to management of bacterial CNS infection was reviewed. METHODS: Studies were included if they described adults treated for a suspected/confirmed bacterial CNS infection and had antibiotic drug concentration(s) determined that affected individual treatment. RESULTS: One-hundred-and-thirty-six citations were retrieved. Seventeen manuscripts were included describing management of 68 patients. TDM for vancomycin (58/68) and the beta-lactams (29/68) was most common. Timing of clinical sampling varied widely between studies and across different antibiotics. Methods for setting individual PK-PD targets, determining parameters and making treatment changes varied widely and were sometimes unclear. DISCUSSION: Despite increasing observational data showing low CNS penetration of various antibiotics, there are few clinical studies describing practical implementation of TDM in management of CNS infection. Lack of consensus around clinically relevant CSF PK-PD targets and protocols for dose-adjustment may contribute. Standardised investigation of TDM as a tool to improve treatment is required, especially as innovative drug concentration-sensing and PK-PD modelling technologies are emerging. Data generated at different centres offering TDM should be open access and aggregated to enrich understanding and optimize application. |
---|