Cargando…

Dynamic analysis of lathe bed of woodworking CNC machining center based on the modeling of joint surface

Based on the finite element theory, a joint-plane modeling method is employed to connect the corresponding nodes at the joint surface of the woodworking computer numerical control (CNC) machining center bed with a 2-node 12-degree-of-freedom unit. A spatial element model is established, which can sh...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Yin-Kun, Hua, Jun, Li, Yan-Na, Chen, Guang-Wei, Liu, Ming-Hui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9704674/
https://www.ncbi.nlm.nih.gov/pubmed/36441700
http://dx.doi.org/10.1371/journal.pone.0277919
Descripción
Sumario:Based on the finite element theory, a joint-plane modeling method is employed to connect the corresponding nodes at the joint surface of the woodworking computer numerical control (CNC) machining center bed with a 2-node 12-degree-of-freedom unit. A spatial element model is established, which can show the state of the nodes between joint surfaces when they are stretched, compressed, or twisted; and it can help build a woodworking CNC machining center on a finite element model of bed with the characteristics of the joint surface. The simulated analysis is performed on the model and is compared with the result of simulated analysis on the bed model that ignores the characteristics of the joint surface and modal experiment. The comparison verifies the effectiveness of the modeling method based on the characteristics of the joint surface. The weak link of the machine bed structure is analyzed and optimized. The natural frequency of the bed is improved by2.55% ~ 11.3%. The displacement is reduced by a maximum of 19.4%, and dynamic performance of the bed is improved.