Cargando…
Acquisition of chess knowledge in AlphaZero
We analyze the knowledge acquired by AlphaZero, a neural network engine that learns chess solely by playing against itself yet becomes capable of outperforming human chess players. Although the system trains without access to human games or guidance, it appears to learn concepts analogous to those u...
Autores principales: | McGrath, Thomas, Kapishnikov, Andrei, Tomašev, Nenad, Pearce, Adam, Wattenberg, Martin, Hassabis, Demis, Kim, Been, Paquet, Ulrich, Kramnik, Vladimir |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9704706/ https://www.ncbi.nlm.nih.gov/pubmed/36375061 http://dx.doi.org/10.1073/pnas.2206625119 |
Ejemplares similares
-
AlphaZe∗∗: AlphaZero-like baselines for imperfect information games are surprisingly strong
por: Blüml, Jannis, et al.
Publicado: (2023) -
AlphaDDA: strategies for adjusting the playing strength of a fully trained AlphaZero system to a suitable human training partner
por: Fujita, Kazuhisa
Publicado: (2022) -
Computer chess
por: Newborn, Monroe
Publicado: (1975) -
Chess and computers
por: Levy, David
Publicado: (1976) -
Chess Not Checkers
por: Miller, Mark
Publicado: (2015)