Cargando…
Intrinsically disordered interaction network in an RNA chaperone revealed by native mass spectrometry
RNA-binding proteins contain intrinsically disordered regions whose functions in RNA recognition are poorly understood. The RNA chaperone Hfq is a homohexamer that contains six flexible C-terminal domains (CTDs). The effect of the CTDs on Hfq’s integrity and RNA binding has been challenging to study...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9704730/ https://www.ncbi.nlm.nih.gov/pubmed/36375072 http://dx.doi.org/10.1073/pnas.2208780119 |
_version_ | 1784840118557736960 |
---|---|
author | Sarni, Samantha H. Roca, Jorjethe Du, Chen Jia, Mengxuan Li, Hantian Damjanovic, Ana Małecka, Ewelina M. Wysocki, Vicki H. Woodson, Sarah A. |
author_facet | Sarni, Samantha H. Roca, Jorjethe Du, Chen Jia, Mengxuan Li, Hantian Damjanovic, Ana Małecka, Ewelina M. Wysocki, Vicki H. Woodson, Sarah A. |
author_sort | Sarni, Samantha H. |
collection | PubMed |
description | RNA-binding proteins contain intrinsically disordered regions whose functions in RNA recognition are poorly understood. The RNA chaperone Hfq is a homohexamer that contains six flexible C-terminal domains (CTDs). The effect of the CTDs on Hfq’s integrity and RNA binding has been challenging to study because of their sequence identity and inherent disorder. We used native mass spectrometry coupled with surface-induced dissociation and molecular dynamics simulations to disentangle the arrangement of the CTDs and their impact on the stability of Escherichia coli Hfq with and without RNA. The results show that the CTDs stabilize the Hfq hexamer through multiple interactions with the core and between CTDs. RNA binding perturbs this network of CTD interactions, destabilizing the Hfq ring. This destabilization is partially compensated by binding of RNAs that contact multiple surfaces of Hfq. By contrast, binding of short RNAs that only contact one or two subunits results in net destabilization of the complex. Together, the results show that a network of intrinsically disordered interactions integrate RNA contacts with the six subunits of Hfq. We propose that this CTD network raises the selectivity of RNA binding. |
format | Online Article Text |
id | pubmed-9704730 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-97047302022-11-29 Intrinsically disordered interaction network in an RNA chaperone revealed by native mass spectrometry Sarni, Samantha H. Roca, Jorjethe Du, Chen Jia, Mengxuan Li, Hantian Damjanovic, Ana Małecka, Ewelina M. Wysocki, Vicki H. Woodson, Sarah A. Proc Natl Acad Sci U S A Biological Sciences RNA-binding proteins contain intrinsically disordered regions whose functions in RNA recognition are poorly understood. The RNA chaperone Hfq is a homohexamer that contains six flexible C-terminal domains (CTDs). The effect of the CTDs on Hfq’s integrity and RNA binding has been challenging to study because of their sequence identity and inherent disorder. We used native mass spectrometry coupled with surface-induced dissociation and molecular dynamics simulations to disentangle the arrangement of the CTDs and their impact on the stability of Escherichia coli Hfq with and without RNA. The results show that the CTDs stabilize the Hfq hexamer through multiple interactions with the core and between CTDs. RNA binding perturbs this network of CTD interactions, destabilizing the Hfq ring. This destabilization is partially compensated by binding of RNAs that contact multiple surfaces of Hfq. By contrast, binding of short RNAs that only contact one or two subunits results in net destabilization of the complex. Together, the results show that a network of intrinsically disordered interactions integrate RNA contacts with the six subunits of Hfq. We propose that this CTD network raises the selectivity of RNA binding. National Academy of Sciences 2022-11-14 2022-11-22 /pmc/articles/PMC9704730/ /pubmed/36375072 http://dx.doi.org/10.1073/pnas.2208780119 Text en Copyright © 2022 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Biological Sciences Sarni, Samantha H. Roca, Jorjethe Du, Chen Jia, Mengxuan Li, Hantian Damjanovic, Ana Małecka, Ewelina M. Wysocki, Vicki H. Woodson, Sarah A. Intrinsically disordered interaction network in an RNA chaperone revealed by native mass spectrometry |
title | Intrinsically disordered interaction network in an RNA chaperone revealed by native mass spectrometry |
title_full | Intrinsically disordered interaction network in an RNA chaperone revealed by native mass spectrometry |
title_fullStr | Intrinsically disordered interaction network in an RNA chaperone revealed by native mass spectrometry |
title_full_unstemmed | Intrinsically disordered interaction network in an RNA chaperone revealed by native mass spectrometry |
title_short | Intrinsically disordered interaction network in an RNA chaperone revealed by native mass spectrometry |
title_sort | intrinsically disordered interaction network in an rna chaperone revealed by native mass spectrometry |
topic | Biological Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9704730/ https://www.ncbi.nlm.nih.gov/pubmed/36375072 http://dx.doi.org/10.1073/pnas.2208780119 |
work_keys_str_mv | AT sarnisamanthah intrinsicallydisorderedinteractionnetworkinanrnachaperonerevealedbynativemassspectrometry AT rocajorjethe intrinsicallydisorderedinteractionnetworkinanrnachaperonerevealedbynativemassspectrometry AT duchen intrinsicallydisorderedinteractionnetworkinanrnachaperonerevealedbynativemassspectrometry AT jiamengxuan intrinsicallydisorderedinteractionnetworkinanrnachaperonerevealedbynativemassspectrometry AT lihantian intrinsicallydisorderedinteractionnetworkinanrnachaperonerevealedbynativemassspectrometry AT damjanovicana intrinsicallydisorderedinteractionnetworkinanrnachaperonerevealedbynativemassspectrometry AT małeckaewelinam intrinsicallydisorderedinteractionnetworkinanrnachaperonerevealedbynativemassspectrometry AT wysockivickih intrinsicallydisorderedinteractionnetworkinanrnachaperonerevealedbynativemassspectrometry AT woodsonsaraha intrinsicallydisorderedinteractionnetworkinanrnachaperonerevealedbynativemassspectrometry |