Cargando…
Trends of extreme US weather events in the changing climate
Trends in extreme 100-y events of temperature and rainfall amounts in the continental United States are estimated, to see effects of climate change. This is a nontrivial statistical problem because climate change effects have to be extracted from “noisy” weather data within a limited time range. We...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9704732/ https://www.ncbi.nlm.nih.gov/pubmed/36375064 http://dx.doi.org/10.1073/pnas.2207536119 |
_version_ | 1784840119087267840 |
---|---|
author | Shenoy, Saahil Gorinevsky, Dimitry Trenberth, Kevin E. Chu, Steven |
author_facet | Shenoy, Saahil Gorinevsky, Dimitry Trenberth, Kevin E. Chu, Steven |
author_sort | Shenoy, Saahil |
collection | PubMed |
description | Trends in extreme 100-y events of temperature and rainfall amounts in the continental United States are estimated, to see effects of climate change. This is a nontrivial statistical problem because climate change effects have to be extracted from “noisy” weather data within a limited time range. We use nonparametric Bayesian methods to estimate the trends of extreme events that have occurred between 1979 and 2019, based on data for temperature and rainfall. We focus on 100-y events for each month in [Formula: see text] geographical areas looking at hourly temperature and 5-d cumulative rainfall. Distribution tail models are constructed using extreme value theory (EVT) and data on 33-y events. This work shows it is possible to aggregate data from spatial points in diverse climate zones for a given month and fit an EVT model with the same parameters. This surprising result means there are enough extreme event data to see the trends in the 41-y record for each calendar month. The yearly trends of the risk of a 100-y high-temperature event show an average 2.1-fold increase over the last 41 y of data across all months, with a 2.6-fold increase for the months of July through October. The risk of high rainfall extremes increases in December and January 1.4-fold, but declines by 22% for the spring and summer months. |
format | Online Article Text |
id | pubmed-9704732 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-97047322023-05-14 Trends of extreme US weather events in the changing climate Shenoy, Saahil Gorinevsky, Dimitry Trenberth, Kevin E. Chu, Steven Proc Natl Acad Sci U S A Physical Sciences Trends in extreme 100-y events of temperature and rainfall amounts in the continental United States are estimated, to see effects of climate change. This is a nontrivial statistical problem because climate change effects have to be extracted from “noisy” weather data within a limited time range. We use nonparametric Bayesian methods to estimate the trends of extreme events that have occurred between 1979 and 2019, based on data for temperature and rainfall. We focus on 100-y events for each month in [Formula: see text] geographical areas looking at hourly temperature and 5-d cumulative rainfall. Distribution tail models are constructed using extreme value theory (EVT) and data on 33-y events. This work shows it is possible to aggregate data from spatial points in diverse climate zones for a given month and fit an EVT model with the same parameters. This surprising result means there are enough extreme event data to see the trends in the 41-y record for each calendar month. The yearly trends of the risk of a 100-y high-temperature event show an average 2.1-fold increase over the last 41 y of data across all months, with a 2.6-fold increase for the months of July through October. The risk of high rainfall extremes increases in December and January 1.4-fold, but declines by 22% for the spring and summer months. National Academy of Sciences 2022-11-14 2022-11-22 /pmc/articles/PMC9704732/ /pubmed/36375064 http://dx.doi.org/10.1073/pnas.2207536119 Text en Copyright © 2022 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Physical Sciences Shenoy, Saahil Gorinevsky, Dimitry Trenberth, Kevin E. Chu, Steven Trends of extreme US weather events in the changing climate |
title | Trends of extreme US weather events in the changing climate |
title_full | Trends of extreme US weather events in the changing climate |
title_fullStr | Trends of extreme US weather events in the changing climate |
title_full_unstemmed | Trends of extreme US weather events in the changing climate |
title_short | Trends of extreme US weather events in the changing climate |
title_sort | trends of extreme us weather events in the changing climate |
topic | Physical Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9704732/ https://www.ncbi.nlm.nih.gov/pubmed/36375064 http://dx.doi.org/10.1073/pnas.2207536119 |
work_keys_str_mv | AT shenoysaahil trendsofextremeusweathereventsinthechangingclimate AT gorinevskydimitry trendsofextremeusweathereventsinthechangingclimate AT trenberthkevine trendsofextremeusweathereventsinthechangingclimate AT chusteven trendsofextremeusweathereventsinthechangingclimate |